• Title/Summary/Keyword: Plasma stream model

Search Result 5, Processing Time 0.019 seconds

A study of model for nitrogen permeation in TIG welding of super duplex stainless steel (슈퍼듀플렉스 스테인리스강의 TIG 용접에서 질소 침투 모델에 관한 연구)

  • Lee, Jae-Hyoung;Jung, Byong-Ho;Cho, Sang-Myung;Jun, Jae-Ho
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.68-74
    • /
    • 2015
  • Superduplex stainless steels are important materials to the oil and gas industry, especially for off-shore production. TIG welding of super duplex stainless steels to obtain the optimal phase balance between austenite and ferrite is mainly achieved by controlling the cooling rate and the weld chemistry. The latter depends on the filler wire chosen and the shielding gas used. If TIG welding of superduplex stainless steels is performed with argon shielding gas only, then nitrogen gets lost from the weld pool, which can result in a ferrite-rich weld metal, with an inferior corrosion resistance than parent metal. In the present study, nitrogen permeation model from the shield gas which gets into the weld metal in DCEN-TIG welding has suggested. This plasma stream model shows characteristics of permeation of nitrogen ions into the molten metal due to the strong physical effect of plasma stream which formed by the arc pressure rather than the permeation of nitrogen ions caused by electric effect.

Aerodynamic Drag Reduction in Cylindrical Model Using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 원통모델의 공기저항저감)

  • Lee, Changwook;Sim, Ju-Hyeong;Han, Sunghyun;Yun, Su Hwan;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • Dielectric barrier discharge (DBD) plasma actuator was designed to reduce aerodynamic drag in a cylindrical model and wind tunnel test was performed at various wind velocities. In addition, computational fluid dynamics (CFD) analysis and flow visualization were used to investigate the effect of the plasma on the flow stream in the cylinderical model. At low wind velocity, the plasma actuator had no effects because flow separation did not appear. The aerodynamic drag was reduced by 14% at 14 m/s and by 27% at 17 m/s, respectively. It was confirmed by CFD analysis and flow visualization that the DBD plasma actuator decreased in pressure difference around the cylindrical model, thus decreasing the magnitude of wake vortex.

Effects of Retention Time on the Simultaneous of Odor Removal and Sludge Solubilization Using a Non-Thermal Plasma System (저온 플라즈마와 활성슬러지 복합 공정에서 체류시간 변화가 악취 저감 및 슬러지 가용화에 미치는 영향)

  • NamGung, Hyeong-Gyu;Hwang, Hyun-Jung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.815-824
    • /
    • 2011
  • In this study, a non-thermal plasma system was employed to simultaneously remove odorous compounds and organic sludge. The system consisted of two reactors; the first one was the non-thermal plasma reactor where ozone was produced by the plasma reaction and the ozone oxidized hydrogen sulfide, the model odorous compound, and then the ozone-laden gas stream was introduced to the second reactor where wasted sludge was disintegrated and solubilized by ozone oxidation. In this study, the gas retention time (GRT) and the hydraulic retention time (HRT) were changed in the two-reactor system, and the effects of GRT and HRT on reduction efficiencies of odor and sludge were determined. As the GRT increased, the ozone concentration increased resulting in an increasing efficiency of hydrogen sulfide removal. However, the overall ozone loading rate to the second sludge reactor was the same at any GRT, which resulted in an insignificant change in sludge reduction rate. When HRTs in the sludge reactor were 1, 2, 4 hours, the sludge reduction rates were approximately 30% during the four-hour operation, while the rate increased to 70% at the HRT of 6 hours. Nevertheless, at HRTs greater than 4 hours, the solubilization efficiency was not proportionally increased with increasing specific input energy, indicating that an appropriate sludge retention time needs to be applied to achieve effective solubilization efficiencies at a minimal power consumption for the non-thermal plasma reaction.

Studies on Drug Absorption Characteristics for Development of Ocular Dosage Forms: Ocular and Systemic Absorption of Topically Applied ${\beta}-Blockers$ in the Pigmented Rabbit

  • Lee, Yong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.3
    • /
    • pp.59-66
    • /
    • 1994
  • The objective of this study was to determine the influence of drug lipophilicity on the extent of ocular and systemic absorption following topical solution instillation in the pigmented rabbit. ${\beta}-Blockers$ of various lipophilicity were chosen as model drugs, $25\;{\mu}l$ of a 15 mM drug solution in isotonic pH 7.4 buffer was instilled, and ocular tissue and plasma drug concentrations were monitored. Ocular absorption was apparently increased in all eye tissues, but non-corneal absorption ratio was decreased by increasing of drug lipophilicity. Systemic bioavailability was ranged from 61% for atenolol to 100% for timolol, and at least 50% of the systemically absorbed drug reached the blood stream from the nasal mucosa. Occluding the nasolacrimal duct for 5 min reduced the extent of systemic absorption of timolol and levobunolol, but did not do so for atenolol and betaxolol. Taken together, the ocular absorption of topically applied ophthalmic drugs would be modest for lipophilic drugs. By contrast, the systemic bioavailability would be modest for drugs at the extremes of lipophilicity, and the nasal contribution to systemically absorbed drug diminished with increasing of drug lipophilicity.

  • PDF

Preliminary study on colloidal partitioning and speciation of trace metals in acid mine drainage

  • Kwon, Jang-Soon;Lee, Jeong-Ho;Yun, Seong-Taek;Jung, Hun-Bok;Chang, Min-Kyoung;Lee, Pyeong-Ku
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.100-101
    • /
    • 2004
  • Many researches in Korea have been performed to understand the pollution of stream waters by acid mine drainage. However, few studies have been conducted regarding the effect of particulate and colloidal fractions on the transport of trace metals. To estimate harmful effects of trace metals, it is important to evaluate the particulate and colloidal metals as well as dissolved metals, because particulate and colloidal fractions of trace metals play an important role in transport of trace metals and may adversely affect habitats and organisms in riverine system. Colloids are solids with effective diameters in size range from 0.001 $\mu$m to 1 $\mu$m. According to Jone et al. (1974), metals in surface water, like Al, Fe, and Mn, require filtration with pore-size membranes smaller than 0.45 $\mu$m to define dissolved concentrations. The main objective of this study is to understand the effects of particulate, colloidal, and truly dissolved fractions on the transport and fate of trace metals in acid mine drainage. This study was conducted for the Onjeong creek in the Uljin mine area. Sampling was carried out in 13 sites, spatially covering the area from mine dumps to the downstream Onjeong reservoir. To examine the metal partitioning between particulate, colloidal, and truly dissolved fraction, we used successive filtration techniques consisting of conventional method (using 0.45 $\mu$m membranes) and tangential-flow ultrafiltration (using 0.001 $\mu$mm membranes). Ultrafiltration may seperate much smaller particles from aqueous phase (Josephson, 1984; Hernandez and Stallard, 1988). The analysis of metals were performed by inductively coupled plasma - atomic emission spectrometer (ICP-AES: model Perkin Elmer OPTIMA3000XL). Anions such as SO$_4$, Cl and NO$_3$ were measured with ion chromatograph (IC: model Dionex 120). Sample analysis is still in progress. The preliminary data show that the studied creek is severely polluted by Al, Fe, Mn, Pb and Zn. Toward upstream sites with relatively lower pH, less than 50% of Al and Fe occur in the sorbed form on particles or colloids, whereas more than 80% of Al and Fe occur in the sorbed form in downstream sites or tributaries with relatively higher pH. Less than 30% of Zn is present in particle or colloidal forms in the whole range of creek. Truly dissolved fraction of trace metals is negatively correlated with pH. The Kd values for Al, Fe and Zn consistently increase with increasing pH and decrease with increasing particle concentration.

  • PDF