• Title/Summary/Keyword: Plasma reactor

Search Result 482, Processing Time 0.023 seconds

A Study on Combined Processes of Sliding Arc Plasma and Corona Dielectric Barrier Discharge for Improve the Efficiency Treatment of Harmful Substance (슬라이딩아크 방전과 코로나 방전의 복합공정을 통한 유해물질 처리효율 개선에 관한 연구)

  • Kwon, Woo-Taeg;Lee, Woo-Sik
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.108-113
    • /
    • 2014
  • The combined process of Sliding Arc Plasma and corona dielectric barrier discharge process (CDBD) was used to efficiently improve harmful substance, which convert into OH radicals which have strong oxidation potential, and so have deodorization and sterilizing effects, by generating specific radicals and anion and then reacting with the moisture contained in harmful substance. As a result of experiment, even if the size of SAP reactor is reduced from 80 A to 50 A, there is no much change and therefore it is judged the size of reactor may be minimized. And it was confirmed that after the anion and ozone generated from CDBD rector react with harmful substance, a anion was reduced from 510,000 ppb to 470 ppb and ozone from 98 ppb to 22 ppb. It was also judged the stability and durability of plasma producer are excellent. Accordingly, it is considered the harmful substances which exist in indoor air quality will be efficiently improved and removed by using further plasma combined process through this study.

Effect of CH4 addition to the H2 Plasma Excited by HF ICP for H2 Production (고주파유도결합에 의해 여기된 물플라즈마로부터 수소생산에서 메탄가스 첨가효과)

  • Kim, Dae-Woon;Jung, Yong-Ho;Choo, Won-Il;Jang, Soo-Ouk;Lee, Bong-Ju;Kim, Young-Ho;Lee, Seung-Heun;Kwon, Sung-Ku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.448-454
    • /
    • 2009
  • Hydrogen was produced from water plasma excited in high frequency (HF) inductively coupled tubular reactor. Mass spectrometry was used to monitor gas phase species at various process conditions, Water dissociation rate depend on the process parameters such as ICP power, $H_{2}O$ flow-rate and process pressure, Water dissociation percent in ICP reactor decrease with increase of chamber pressure, while increase with increase of ICP power and $H_{2}O$ flow rate. The effect of $CH_4$ gas addition to a water plasma on the hydrogen production has been studied in a HF ICP tubular reactor. The main roles of $CH_4$ additive gas in $H_{2}O$ plasma are to react with 0 radical for forming $CO_x$ and CHO and resulting additional $H_2$ production. Furthermore, $CH_4$ additives in $H_{2}O$ plasma is to suppress reverse-reaction by scavenging 0 radical. But, process optimization is needed because $CH_4$ addition has some negative effects such as cost increase and $CO_x$ emission.

Study on Process Parameters for Effective H2 Production from H2O in High Frequency Inductively Coupled Plasma Reactor (고주파유도결합플라즈마 반응기에서 물로부터 수소생성효율을 높이기 위한 공정변수에 대한 연구)

  • Kwon, Sung-Ku;Jung, Yong-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.206-212
    • /
    • 2011
  • The effect of process parameters on $H_2$ production from water vapor excited by HF ICP has been qualitatively examined for the first time. With the increase of ICP power, characteristics of $H_2$ production from $H_2O$ dissociation in plasma was divided into 3 regions according to both reaction mechanism and energy efficiency. At the edge of region (II) in the range of middle ICP power, energy effective hydrogen production from $H_2O$ plasma can be achieved. Furthermore, within the region (II) power condition, heating of substrate up to $500^{\circ}C$ shows additional increase of 70~80% in $H_2$ production compared to $H_2O$ plasma without substrate heating. This study have shown that combination of optimal plasma power (region II) and wall heating (around $500^{\circ}C$) is one of effective ways for $H_2$ production from $H_2O$.

An Experimental Study of Power Saving Technique in Non-thermal Plasma DeSOx/DeNOx Process (저온 플라즈마 탈황물질 공정의 운전전력 절감을 위한 실험연구)

  • 송영훈;최연석;김한석;신완호;길상인;정상현;최갑석;최현구;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.487-494
    • /
    • 1996
  • Simultaneous effects of $C_2H_4$ injection and heterogeneous chemical reactions on non-thermal plasma process to remove $SO_2$ and NOx from flue gas were investigated in the present experimental study. The present results showed that 40% of the electrical power can be reduced in $C_2H_4$ injection and heterogeneous chemical reaction are simultaneously included in the non-thermal plasma precess. As an effort to apply the non-thermal plasma technique to practical flue gas treatment system, a wire-plate type reactor which has technically similar geometry of industrial electrostatic precipitators is used instead of other types of reactors, such as wire-cylinder, packed-bed and surface discharge which are inappropriate to industrial application. In the present study, the photo pictures of positive streamer corona taken by ICCD camera, voltage and current oscillograms, and design criteria of a wire-plate type reactor are also shown, which are needed for industrial application of the non-thermal plasma process.

  • PDF

Treatment of Ar/O2 Atmospheric Pressure Plasma for Sterilization (아르곤과 산소 대기압 플라즈마 방전 효과를 이용한 살균처리)

  • Son, Hyang Ho;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.261-265
    • /
    • 2011
  • The sterilization effects of atmospheric pressure plasma with the mixture of argon and oxygen were analyzed. The plasma reactor with the shape of dielectric barrier discharge produced the uniform distribution of glow discharge and generated ozone gas effectively according to the various process parameters. The sterilization for E. coli was affected by power, oxygen ratio in the mixture gas, treatment time and distance between reactor and sample. The concentration of ozone was a major source for the sterilization of E. coli, which was enhanced by the increase of power and oxygen ratio. In this study, the effect of atmospheric pressure plasma treatment for the sterilization was confirmed and its result can deliver the atmospheric pressure plasma treatment as the novel sterilization method instead of conventional methods.

Research on the cable-driven endoscopic manipulator for fusion reactors

  • Guodong Qin;Yong Cheng;Aihong Ji;Hongtao Pan;Yang Yang;Zhixin Yao;Yuntao Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.498-505
    • /
    • 2024
  • In this paper, a cable-driven endoscopic manipulator (CEM) is designed for the Chinese latest compact fusion reactor. The whole CEM arm is more than 3000 mm long and includes end vision tools, an endoscopic manipulator/control system, a feeding system, a drag chain system, support systems, a neutron shield door, etc. It can cover a range of ±45° of the vacuum chamber by working in a wrap-around mode, etc., to meet the need for observation at any position and angle. By placing all drive motors in the end drive box via a cable drive, cooling, and radiation protection of the entire robot can be facilitated. To address the CEM motion control problem, a discrete trajectory tracking method is proposed. By restricting each joint of the CEM to the target curve through segmental fitting, the trajectory tracking control is completed. To avoid the joint rotation angle overrun, a joint limit rotation angle optimization method is proposed based on the equivalent rod length principle. Finally, the CEM simulation system is established. The rationality of the structure design and the effectiveness of the motion control algorithm are verified by the simulation.

Conversion Characteristics of CH4 and CO2 in an Atmospheric Pressure Plasma Reactor (대기압 플라즈마 반응기에서의 CH4와 CO2의 전환처리 특성)

  • Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.653-657
    • /
    • 2011
  • Conversion characteristics of $CH_4$ and $CO_2$ was studied using an atmospheric pressure plasma for the preparation of synthesis gas composed of $H_2$ and CO. The effects of delivered power, total gas flow rate, and gas residence time in the reactor on the conversion of $CH_4$ and $CO_2$ were evaluated in a plasma reactor with the type of dielectric barrier discharge. The increase of reactor temperature did not affect on the increase of conversion if the temperature does not reach to the appropriate level. The conversion of $CH_4$ and $CO_2$ largely increased with increasing the delivered power. As the $CH_4/CO_2$ ratio increased, the $CH_4$ conversion decreased, whereas the $CO_2$ conversion increased. Generally, the $CH_4$ convesion was higher than the $CO_2$ conversion through the variation of the process parameters.

Analyzing nuclear reactor simulation data and uncertainty with the group method of data handling

  • Radaideh, Majdi I.;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.287-295
    • /
    • 2020
  • Group method of data handling (GMDH) is considered one of the earliest deep learning methods. Deep learning gained additional interest in today's applications due to its capability to handle complex and high dimensional problems. In this study, multi-layer GMDH networks are used to perform uncertainty quantification (UQ) and sensitivity analysis (SA) of nuclear reactor simulations. GMDH is utilized as a surrogate/metamodel to replace high fidelity computer models with cheap-to-evaluate surrogate models, which facilitate UQ and SA tasks (e.g. variance decomposition, uncertainty propagation, etc.). GMDH performance is validated through two UQ applications in reactor simulations: (1) low dimensional input space (two-phase flow in a reactor channel), and (2) high dimensional space (8-group homogenized cross-sections). In both applications, GMDH networks show very good performance with small mean absolute and squared errors as well as high accuracy in capturing the target variance. GMDH is utilized afterward to perform UQ tasks such as variance decomposition through Sobol indices, and GMDH-based uncertainty propagation with large number of samples. GMDH performance is also compared to other surrogates including Gaussian processes and polynomial chaos expansions. The comparison shows that GMDH has competitive performance with the other methods for the low dimensional problem, and reliable performance for the high dimensional problem.

The Characteristic of NOx Removal Using Catalyst-Corona Discharge (촉매-코로나방전을 이용한 NOx제거 특성)

  • Goh, Hee-Suk;Park, Jae-Yoon;Kim, Jong-Suk;Lee, Soo-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.27-33
    • /
    • 2004
  • The catalytic effect of waterworks sludge on NOx removal in $BaTiO_3$pellets and sludge pellets combined packed-bed plasma reactor with plate-plate electrode geometry is measured for the various conditions. NOx removal rate is about 90[%] at $BaTiO_3$-sludge combined reactor used fresh sludge. $NO_2$ and $O_3$ as byproducts are significantly generated in only $BaTiO_3$ packed-bed plasma reactor, however, in $BaTiO_3$-sludge combined packed-bed reactor, $NO_2$ and $O_3$ are completely removed while $CO_2$ as by-products are observed from FTIR spectra. $NO_2$ and $O_3$ seem to react with metallic molecules, metal oxide, and organic compounds that are generally chlorophyll included in sludge. NOx removal rate increases with $O_2$ concentration increasing. Removal rates $NO_2$ and $O_3$ are independent of operating time and repetition measurement times.

PROCESS OPTIMIZATION OF METHANE REFORMING IN ARC JET (아크젯 플라즈마에서의 메탄개질의 최적화)

  • Hwang, Na-Kyung;Lee, Dae-Hoon;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.266-271
    • /
    • 2006
  • Characteristic of partial oxidation of methane using arc-jet plasma by AC power is investigated. Arc-jet reactor used in this work is slightly modified from typical arc jet reactor so that it can make and sustain stable state of plasma. Methane conversion, selectivity of chemicals such as hydrogen and hydrocarbon materials in the product are analyzed. Parametric approach on the performance of the reactor or detail on the partial oxidation process is carried with $O_2/C$ ratio as parameter. In addition to the results, SED and arc length is changed to understand the effect of current-voltage correlation on the reforming performance and relative role of thermal process.

  • PDF