• 제목/요약/키워드: Plasma processing and deposition

검색결과 97건 처리시간 0.026초

Interaction study of molten uranium with multilayer SiC/Y2O3 and Mo/Y2O3 coated graphite

  • S.K. Sharma;M.T. Saify;Sanjib Majumdar;Palash K. Mollick
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1855-1862
    • /
    • 2023
  • Graphite crucibles are used for melting uranium and its alloys in VIM furnace. Various coating materials namely Al2O3, ZrO2, MgO etc. are applied on the inner surface of the crucibles using paint brush or thermal spray technique to mitigate U-C interaction. These leads to significant amount of carbon pick-up in uranium. In this study, the attempts are made to develop multilayer coatings comprising of SiC/Y2O3 and Mo/Y2O3 on graphite to study the feasibility of minimizing U-C interaction. The parameters are optimized to prepare SiC coating of about 70㎛ thickness using CVD technique on graphite coupons and subsequently Y2O3 coating of about 250㎛ thickness using plasma spray technique. Molybdenum and Y2O3 layers were deposited using plasma spray technique with 70㎛ and 250㎛ thickness, respectively. Interaction studies of the coated graphite with molten uranium at 1450℃ for 20 min revealed that Y2O3 coating with SiC interlayer provides physical barrier for uranium-graphite interaction, however, this led to the physical separation of coating layer. Y2O3 coating with Mo interlayer provided superior barrier effect showing no degradation and the coatings remained intact after interaction tests. Therefore, the Mo/Y2O3 coating was found to be a promising solution for minimizing carbon pick-up during uranium/uranium alloy melting.

옥시불화이트륨 분말의 고상합성 및 플라즈마 스프레이 코팅 적용 (Solid-state synthesis of yttrium oxyfluoride powders and their application to plasma spray coating)

  • 이정일;김영주;채희라;김윤정;박성주;신경선;하태빈;김지현;정구훈;류정호
    • 한국결정성장학회지
    • /
    • 제31권6호
    • /
    • pp.276-281
    • /
    • 2021
  • 반도체 회로를 제조하기 위해서 에칭, 세척, 증착 등의 공정들이 반복적으로 진행된다. 따라서 이러한 공정이 진행되면 진공장비 내부는 부식성이 높은 가혹한 플라즈마 환경에 노출되게 된다. 따라서 반도체 공정 장비의 내부를 플라즈마 노출에 강한 재료를 사용하여 코팅층의 에칭과 오염 입자의 생성을 최소화하여야 한다. 본 연구에서는 고상합성법에 의해 Y2O3와 YF3 분말을 원료물질로 옥시불화이트륨(YOF)를 성공적으로 합성하였다. Y2O3와 YF3 분말의 혼합비율은 1.0:1.0에서 1.0:1.6까지 조절하였으며, 혼합비율이 합성된 YOF 분말의 결정구조와 미세구조에 미치는 영향을 XRD와 FE-SEM으로 조사하였다. 합성된 YOF 분말을 이용하여 알루미늄 기판에 플라즈마 스프레이법으로 성공적으로 코팅하였다.

Multicrystalline Silicon Texturing for Large Area CommercialSolar Cell of Low Cost and High Efficiency

  • Dhungel, S.K.;Karunagaran, B.;Kim, Kyung-Hae;Yoo, Jin-Su;SunWoo, H.;Manna, U.;Gangopadhyay, U.;Basu, P.K.;Mangalaraj, D;Yi, J.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.280-284
    • /
    • 2004
  • Multicrystalline silicon wafers were textured in an alkaline bath, basically using sodium hydroxide and in acidic bath, using mainly hydrofluoric acid (HF), nitric acid $(HNO_3)$ and de-ionized water (DIW). Some wafers were also acid polished for the comparative study. Comparison of average reflectance of the samples treated with the new recipe of acidic solution showed average diffuse reflectance less than even 5 percent in the optimized condition. Solar cells were thus fabricated with the samples following the main steps such as phosphorus doping for emitter layer formation, silicon nitride deposition for anti-reflection coating by plasma enhanced chemical vapor deposition (PECVD) and front surface passivation, screen printing metallization, co-firing in rapid thermal processing (RTP) Furnace and laser edge isolation and confirmed >14 % conversion efficiency from the best textured samples. This isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low cost silicon wafers as starting material.

  • PDF

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 추계학술발표회 초록집
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

양질의 계란 생산전략 II. 계란내용물의 질, 콜레스테롤 함량, 난황색, 난중조절, 유기란 (A Strategy for Quality Poultry Egg Production II. Egg Interior Quality; Cholesterol Content, Egg Yolk Pigmentation, Controlling Egg weight and Organic Eggs)

  • 남기홍
    • 한국가금학회지
    • /
    • 제27권2호
    • /
    • pp.133-153
    • /
    • 2000
  • The egg's interior quality is one of the most important criteria for commercial producers and consumers. Internal quality is complex, including aesthetic factors such as taste, freshness, nutritional and processing values, and the genetic influences upon these upon these factors ranges from none to considerable. The rate of cholesterol synthesis in the hen is very high compared to other animals and humans. Genetic selection, diet drugs and other chemicals can alter cholesterol concentration in the plasma of laying hen, but attempts to manipulate the cholesterol concentration in the egg yolk are generally unsuccessful since the cholesterol can only be changed to a small extent. Factors which may affect the degree of pigmentation of the yolk include the type of xanthophyll and its concentration in the feed, the feed composition, and the health of the hen. Several feed ingredients interact with carotenoid pigment to improve or reduce their deposition rates in yolks. Egg weight is determined by genetics, body size prior to first egg housing density, environmental temperature, lighting program, total feed consumption, calcium, phosphorus, niacin, water, methionine, total sulfur amino acids, energy, linoleic acid, fat and protein levels. Eggs need to be promote levels. Eggs need to be promoted a versatile commodity and new processed egg items need to be developed. Organic eggs are laid by hens which were raised in chemical and drug frdd environments. There are still difficulties in producing these eggs due to the availability of organic poultry feeds and cost of organic grains.

  • PDF

반응성 질소와 플라즈마 처리에 의한 문턱 스위칭 소자의 개선 (Improved Distribution of Threshold Switching Device by Reactive Nitrogen and Plasma Treatment)

  • 김동식
    • 전자공학회논문지
    • /
    • 제51권8호
    • /
    • pp.172-177
    • /
    • 2014
  • 두 가지 $N_2$ 프로세스(성장 중 반응성 질소 그리고 질소 플라즈마 경화)에 의해 특별히 개선된 AsGeTeS 위에 만들어진 문턱 스위칭 소자를 제시하고자 한다. 적층과 열적 안정적인 소자 구조가 가능한 두 스텝 프로세스에서의 질소의 사용은 나노급 배열 회로의 응용에서의 스위치와 메모리 소자의 집적을 가능하게 한다. 이것의 좋은 문턱 스위칭 특성에도 불구하고 AsTeGeSi 기반의 스위치는 높은 온도에서의 신뢰성 있는 저항 메모리 적용에 중요한 요소를 가진다. 이것은 보통 Te의 농도 변화에 기인한다. 그러나 chalconitride 스위치(AsTeGeSiN)은 $30{\times}30(nm^2)$ 셀에서 $1.1{\times}10^7A/cm^2$가 넘는 높은 전류 농도를 갖는 높은 온도 안정성을 보여준다. 스위치의 반복 능력은 $10^8$번을 넘어선다. 더하여 AsTeGeSiN 선택 소자를 가진 TaOx 저항성 메모리를 사용한 1 스위치-1저항으로 구성된 메모리 셀을 시연하였다.

PECVD를 이용한 DLC 두께 제어에 따른 간섭색 구현 (Tuning the Interference Color with PECVD Prepared DLC Thickness)

  • 박새봄;김광배;김호준;김치환;최현우;송오성
    • 한국재료학회지
    • /
    • 제31권7호
    • /
    • pp.403-408
    • /
    • 2021
  • Various surface colors are predicted and implemented using the interference color generated by controlling the thickness of nano-level diamond like carbon (DLC) thin film. Samples having thicknesses of up to 385 nm and various interference colors are prepared using a single crystal silicon (100) substrate with changing processing times at low temperature by plasma-enhanced chemical vapor deposition. The thickness, surface roughness, color, phases, and anti-scratch performance under each condition are analyzed using a scanning electron microscope, colorimeter, micro-Raman device, and scratch tester. Coating with the same uniformity as the surface roughness of the substrate is possible over the entire experimental thickness range, and more than five different colors are implemented at this time. The color matched with the color predicted by the model, assuming only the reflection mode of the thin film. All the DLC thin films show constant D/G peak fraction without significant change, and have anti-scratch values of about 19 N. The results indicate the possibility that nano-level DLC thin films with various interference colors can be applied to exterior materials of actual mobile devices.

$N_2O$가스를 사용하여 PECVD로 성장된 Oxynitride막의 특성 (Characteristics of oxynitride films grown by PECVD using $N_2O$ gas)

  • 최현식;이철인;장의구
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.9-17
    • /
    • 1996
  • Plasma enhanced chemical vapor deposition (PECVD) allows low temperature processing and so it is widely used, but it causes instability of devices due to serious amount of impurities within the film. In this paper, electrical and chemical characteristics of the PECVD oxynitride film formed by different N$_{2}$O to N$_{2}$O+NH$_{3}$ gas ratio is studied. It has been found that hydrogen concentration of PECVD oxynitride film was decreased from 4.25*10$^{22}$ [cm$^{-2}$ ] to 1.18*10$^{21}$ [cm$^{-2}$ ] according to the increase of N$_{2}$O gas. It was also found that PECVD oxynitride films have low trap density in the oxide and interface in comparison with PECVD nitroxide films, and has higher refractive index and capacitance than oxide films. In particular, oxynitride film formed in gas ratio of N$_{2}$O/(N$_{2}$O+NH$_{3}$)= 0.88 shows increased capacitance and decreased leakage current due to small portion of hydrogen in oxide and the accumulation of nitrogen about 4[atm.%] at the interface.

  • PDF

플라즈마 화학 기상 증착법에서 DC bias가 인가된 탄소나노튜브의 수직성장과 전계방출 특성 (The Vertical Growth of CNTs by DC Bias-Assisted PECVD and Their Field Emission Properties.)

  • 정성회;김광식;장건익;류호진
    • 한국전기전자재료학회논문지
    • /
    • 제15권4호
    • /
    • pp.367-372
    • /
    • 2002
  • The vertically well-aligned carbon nanotubes(CNTs) were successfully grown on Ni coated silicon wafer substrate by DC bias-assisted PECVD(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15~30nm was prepared by electron beam evaporator method. In order to find the optimum growth condition, the type of gas mixture such as $C_2H_2-NH_3$ was systematically investigated by adjusting the gas mixing ratio at $570^{\circ}C$ under 0.4Torr. The diameter of the grown CNTs was 40~200nm and the diameter of the CNTs increased with increasing the Ni particles size. TEM images clearly showed carbon nanotubes to be multiwalled. The measured turn-on field was $3.9V/\mu\textrm{m}$ and an emission current of $1.4{\times}10^4A/\textrm{cm}^2$ was $7V/\mu\textrm{m}$. The CNTs grown by bias-assisted PECVD was able to demonstrate high quality in terms of vertical alignment, crystallization of graphite and the processing technique at low temperature of $570^{\circ}C$ and this can be applied for the emitter tip of FEDs.