• Title/Summary/Keyword: Plasma processing

Search Result 645, Processing Time 0.028 seconds

Fast Measurement using Wave-Cutoff Method

  • Seo, Sang-Hun;Na, Byeong-Geun;Yu, Gwang-Ho;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.30-30
    • /
    • 2011
  • The wave-cutoff tool is a new diagnostic method to measure electron density and electron temperature. Most of the plasma diagnostic tools have the disadvantage that their application to processing plasma where toxic and reactive gases are used gives rise to many problems such as contamination, perturbation, precision of measurement, and so on. We can minimize these problems by using the wave-cutoff method. Here, we will present the results obtained through the development of the wave-cutoff diagnostic method. The frequency spectrum characteristics of the wave-cutoff probe will be obtained experimentally and analyzed through the microwave field simulation by using the CST-MW studio simulator. The plasma parameters are measured with the wave-cutoff method in various discharge conditions and its results will be compared with the results of Langmuir probe. Another disadvantage is that other diagnostic methods spend a long time (~ a few seconds) to measure plasma parameters. In this presentation, a fast measurement method will be also introduced. The wave-cutoff probe system consists of two antennas and a network analyzer. The network analyzer provides the transmission spectrum and the reflection spectrum by frequency sweeping. The plasma parameters such as electron density and electron temperature are obtained through these spectra. The frequency sweeping time, the time resolution of the wave-cutoff method, is about 1 second. A short pulse with a broad band spectrum of a few GHz is used with an oscilloscope to acquire the spectra data in a short time. The data acquisition time can be reduced with this method. Here, the plasma parameter measurement methods, Langmuir probe, pulsed wave-cutoff method and frequency sweeping wave-cutoff method, are compared. The measurement results are well matched. The real time resolution is less than 1 ?sec. The pulsed wave-cutoff technique is found to be very useful in the transient plasmas such as pulsed plasma and tokamak edge plasma.

  • PDF

Dry Etching Using Atmospheric Plasma for Crystalline Silicon Solar Cells (대기압 플라즈마를 이용한 결정질 태양전지 표면 식각 공정)

  • Hwang, Sang Hyuk;Kwon, Hee Tae;Kim, Woo Jae;Choi, Jin Woo;Shin, Gi-Won;Yang, Chang-Sil;Kwon, Gi-Chung
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.211-215
    • /
    • 2017
  • Reactive Ion Etching (RIE) and wet etching are employed in existing texturing processes to fabricate solar cells. Laser etching is used for particular purposes such as selective etching for grooves. However, such processes require a higher level of cost and longer processing time and those factors affect the unit cost of each process of fabricating solar cells. As a way to reduce the unit cost of this process of making solar cells, an atmospheric plasma source will be employed in this study for the texturing of crystalline silicon wafers. In this study, we produced the atmospheric plasma source and examined its basic properties. Then, using the prepared atmospheric plasma source, we performed the texturing process of crystalline silicon wafers. The results obtained from texturing processes employing the atmospheric plasma source and employing RIE were examined and compared with each other. The average reflectance of the specimens obtained from the atmospheric plasma texturing process was 7.88 %, while that of specimens obtained from the texturing process employing RIE was 8.04 %. Surface morphologies of textured wafers were examined and measured through Scanning Electron Microscopy (SEM) and similar shapes of reactive ion etched wafers were found. The Power Conversion Efficiencies (PCE) of the solar cells manufactured through each process were 16.97 % (atmospheric plasma texturing) and 16.29 % (RIE texturing).

Effects of the One side Hydrophilicity for Nylon/PU Water Repellent Blended Fabric Treated with Low Temperature Plasma Treatment (저온 플라즈마 처리한 Nylon/PU 혼방발수직물의 편면친수효과)

  • Ma, Jae Hyuk;Son, Kyoung Tai;Koo, Kang
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.461-466
    • /
    • 2013
  • Synthetic fiber materials were developed due the desire of consumers for high-quality, high-performance and comfort. A high functionality of synthetic fiber can be obtained through surface treatment that can improve hydrophilic properties, color depth after dyeing and adhesion properties. These advantages create added-value. Hydrophobic properties are an important feature to create added-value (such as hydrophilic properties). One side processing is a method of imparting to contrary function on the front and rear side. In this study, fluorine-coated Nylon/PU blended fabric was treated on only one side with a low-temperature plasma treatment; subsequently, the contact angles decreased by increasing the time and intensity of the plasma treatment. The contact angle of the untreated surface and the treated surface was different. It a showed a difference in the properties of both surfaces. Tensile strength and stiffness decreased by increasing the time and intensity of the plasma treatment. However, plasma treatment did not significantly change the tensile strength and stiffness on both surfaces of the fabric. SEM photographs showed the surface of fluorine-coated fabric and the etching surface by using plasma treatment on the fabric. Plasma treatment was confirmed not to affect the physical properties of the fabric.

Atmospheric-Pressure Plasma Treatment of Ethylene-Vinyl Acetate (EVA) to Enhance Adhesion Energy between EVA and Polyurethane (상압 플라즈마 표면처리에 따른 Ethylene-Vinyl Acetate (EVA)의 표면개질 및 Polyurethane과의 접착력 증진)

  • Kim, Jeong-Soon;Uhm, Han-S;Kim, Hyoung-Suk
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.3-11
    • /
    • 2004
  • Plasma treatment is frequently used to increase surface functionality and surface activity. It enables to improve various surface properties such as catalytic selectivity, printability, and interfacial adhesion between various materials. Surface or the ethylene-vinyl acetate (EVA) is exposed under an atmospheric pressure plasma torch (APPT), generated by dielectric barrier discharge (DBD), and the treated surfaces are systemically investigated. Argon, air, and oxygen are used as a processing gas. Properties of the treated EVA surfaces are investigated by the zeta-potential measurements and surface free energies. It is shown that the plasma treatment leads to a drastic increase of surface functional groups of EVA, as the increase of its adhesion energy ($G_{IC}$). Therefore, it is concluded that the APPT process is an effective means to improve adhesion of EVA and polyurethane (PU).

Plasma nitriding on chromium electrodeposit

  • Wang Liang;K.S. Nam;Kim, D.;Kim, M.;S.C. Kwon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.29-30
    • /
    • 2001
  • This paper presents some results of plasma nitriding on hard chromium deposit. The substrates were C45 steel and $30~50{\;}\mu\textrm{m}$ of chromium deposit by electroplating was formed. Plasma nitriding was carried out in a plasma nitriding system with $95NH_3{\;}+{\;}SCH_4$ atmosphere at the pressure about 600 Pa and different temperature from $450^{\circ}C{\;}to{\;}720^{\circ}C$ for various time. Optical microscopy and X-ray diffraction were used to evaluate the characteristics of surface nitride layer formed by nitrogen diffusion from plasma atmosphere inward iCr coating and interface carbide layer formed by carbon diffusion from substrate outward Cr coating. The microhardness was measured using microhareness tester at the load of 100 gf. Corrosion resistance was evaluated using the potentiodynamic measurement in 3.5% NaG solution. A saturated calomel electrode (SiCE) was used as the reference electrode. Fig.1 shows the typical microstructures of top surface and cross-section for nitrided and unnitrided samples. Aaer plasma nitriding a sandwich structure was formed consisting of surface nitride layer, center chromium layer and interface carbide layer. The thickness of nitride and carbide layers was increased with the increase of processing temperature and time. Hardness reached about 1000Hv after nitriding while 900Hv for unnitrided hard chromium deposit. X-ray diffraction indicated that surface nitrided layer was a mixture of $Cr_2N$ and CrN at low temperature and erN at high temperature (Fig.2). Anodic polarization curves showed that plasma nitriding can greatly improve the corrosion resistance of chromium e1ectrodeposit. After plasma nitriding, the corrosion potential moved to noble direction and passive current density was lower by 1 to 4 orders of magnitude compared with chromium deposit(Fig.3).

  • PDF

Effects of $N_2$ addition on chemical etching of silicon nitride layers in $F_2/Ar/N_2$ remote plasma processing

  • Park, S.M.;Kim, H.W.;Kim, S.I.;Yun, Y.B.;Lee, N.E.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.78-79
    • /
    • 2007
  • In this study, chemical dry characteristics of silicon nitride layers were investigated in the $F_2/N_2/Ar$ remote plasma. A toroidal-type remote plasma source was used for the generation of remote plasmas. The effects of additive $N_2$ gas on the etch rates of various silicon nitride layers deposited using different deposition techniques and precursors were investigated by varying the various process parameters, such as the $F_2$ flow rate, the addition $N_2$ flow rate and the substrate temperature. The etch rates of the various silicon nitride layers at the room temperature were initially increased and then decreased with the $N_2$ flow increased, which indicates an existence of the maximum etch rates. The etch rates of the silicon oxide layers were also significantly increased with the substrate temperature increased. In the present experiments the $F_2$ gas flow, addition $N_2$ flow rate and the substrate temperature were found to be the critical parameters in determining the etch rate of the silicon nitride layers

  • PDF

Study of the Diffusion of Phosphorus Dependent on Temperatures for Selective Emitter Doping Process of Atmospheric Pressure Plasma (대기압 플라즈마의 선택적 도핑 공정에서 온도에 의한 인(Phosphorus)의 확산연구)

  • Kim, Sang Hun;Yun, Myoung Soo;Park, Jong In;Koo, Je Huan;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi-Chung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.227-232
    • /
    • 2014
  • In this study, we propose the application of doping process technology for atmospheric pressure plasma. The plasma treatment means the wafer is warmed via resistance heating from current paths. These paths are induced by the surface charge density in the presence of illuminating Argon atmospheric plasmas. Furthermore, it is investigated on the high-concentration doping to a selective partial region in P type solar cell wafer. It is identified that diffusion of impurities is related to the wafer temperature. For the fixed plasma treatment time, plasma currents were set with 40, 70, 120 mA. For the processing time, IR(Infra-Red) images are analyzed via a camera dependent on the temperature of the P type wafer. Phosphorus concentrations are also analyzed through SIMS profiles from doped wafer. According to the analysis for doping process, as applied plasma currents increase, so the doping depth becomes deeper. As the junction depth is deeper, so the surface resistance is to be lowered. In addition, the surface charge density has a tendency inversely proportional to the initial phosphorus concentration. Overall, when the plasma current increases, then it becomes higher temperatures in wafer. It is shown that the diffusion of the impurity is critically dependent on the temperature of wafers.

Current status of Atomic and Molecular Data for Low-Temperature Plasmas

  • Yoon, Jung-Sik;Song, Mi-Young;Kwon, Deuk-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.64-64
    • /
    • 2015
  • Control of plasma processing methodologies can only occur by obtaining a thorough understanding of the physical and chemical properties of plasmas. However, all plasma processes are currently used in the industry with an incomplete understanding of the coupled chemical and physical properties of the plasma involved. Thus, they are often 'non-predictive' and hence it is not possible to alter the manufacturing process without the risk of considerable product loss. Only a more comprehensive understanding of such processes will allow models of such plasmas to be constructed that in turn can be used to design the next generation of plasma reactors. Developing such models and gaining a detailed understanding of the physical and chemical mechanisms within plasma systems is intricately linked to our knowledge of the key interactions within the plasma and thus the status of the database for characterizing electron, ion and photon interactions with those atomic and molecular species within the plasma and knowledge of both the cross-sections and reaction rates for such collisions, both in the gaseous phase and on the surfaces of the plasma reactor. The compilation of databases required for understanding most plasmas remains inadequate. The spectroscopic database required for monitoring both technological and fusion plasmas and thence deriving fundamental quantities such as chemical composition, neutral, electron and ion temperatures is incomplete with several gaps in our knowledge of many molecular spectra, particularly for radicals and excited (vibrational and electronic) species. However, the compilation of fundamental atomic and molecular data required for such plasma databases is rarely a coherent, planned research program, instead it is a parasitic process. The plasma community is a rapacious user of atomic and molecular data but is increasingly faced with a deficit of data necessary to both interpret observations and build models that can be used to develop the next-generation plasma tools that will continue the scientific and technological progress of the late 20th and early 21st century. It is therefore necessary to both compile and curate the A&M data we do have and thence identify missing data needed by the plasma community (and other user communities). Such data may then be acquired using a mixture of benchmarking experiments and theoretical formalisms. However, equally important is the need for the scientific/technological community to recognize the need to support the value of such databases and the underlying fundamental A&M that populates them. This must be conveyed to funders who are currently attracted to more apparent high-profile projects.

  • PDF

Characterization of carrier transport and trapping in semiconductor films during plasma processing

  • Nunomura, Shota;Sakata, Isao;Matsubara, Koji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.391-391
    • /
    • 2016
  • The carrier transport is a key factor that determines the device performances of semiconductor devices such as solar cells and transistors [1]. Particularly, devices composed of in amorphous semiconductors, the transport is often restricted by carrier trapping, associated with various defects. So far, the trapping has been studied for as-grown films at room temperature; however it has not been studied during growth under plasma processing. Here, we demonstrate the detection of trapped carriers in hydrogenated amorphous silicon (a-Si:H) films during plasma processing, and discuss the carrier trapping and defect kinetics. Using an optically pump-probe technique, we detected the trapped carriers (electrons) in an a-Si:H films during growth by a hydrogen diluted silane discharge [2]. A device-grade intrinsic a-Si:H film growing on a glass substrate was illuminated with pump and probe light. The pump induced the photocurrent, whereas the pulsed probe induced an increment in the photocurrent. The photocurrent and its increment were separately measured using a lock-in technique. Because the increment in the photocurrent originates from emission of trapped carriers, and therefore the trapped carrier density was determined from this increment under the assumption of carrier generation and recombination dynamics [2]. We found that the trapped carrier density in device grade intrinsic a-Si:H was the order of 1e17 to 1e18 cm-3. It was highly dependent on the growth conditions, particularly on the growth temperature. At 473K, the trapped carrier density was minimized. Interestingly, the detected trapped carriers were homogeneously distributed in the direction of film growth, and they were decreased once the film growth was terminated by turning off the discharge.

  • PDF