• Title/Summary/Keyword: Plasma ion implantation

Search Result 99, Processing Time 0.021 seconds

Effect of Nitrogen Ion Implantation on Corrosion Resistance of Biocompatible Ti Implant (질소이온의 주입이 생체안전성 티타늄임플란트의 내식성에 미치는 영향)

  • 최종운;손선희
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.134-139
    • /
    • 1999
  • In this study, PSII(plasma source ion implantation) was used to improve the biocompatibility of bone-anchored Ti implant. According to potentiodynamic anodic polarization test in deaerated Hank's solution, open circuit potential of ion implanted specimens were increased compare to that of unimplanted specimen ; besides, passive current density and critical anodic current density of ion implanted specimens were lower than unimplanted specimen.

  • PDF

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma Part I

  • Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.31-34
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that the silica as a filler in EMC (epoxy molding compound) wears die surface to be roughened, which results in increase of adhesion strength. As the sticking behavior, however, showed strong dependency on the EMC models based on the experimental results from different semiconductor manufacturers, chemisorption or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2, N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic or vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

The Effects of Processing Parameters of Plasma Characteristics by Induced Coupled Plasma Source (유도결합 플라즈마(ICP) source로 생성된 plasma 특성의 공정 변수 영향)

  • Lee, S.W.;Kim, H.;Lim, J.Y.;Ahn, Y.Y.;Whoang, I.W.;Kim, J.H.;Ji, J.Y.;Choi, J.Y.;Lee, Y.J.;Ha, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.328-329
    • /
    • 2006
  • 반도체 소자의 소형화, 고질적화는 junction 깊이 감소와 도핑농도의 증가를 요구한다. 현재 상용화되는 도핑법은 이온빔 주입(Ion Beam Ion Implantation, IBII)인데, 이 방법은 낮은 가속에너지를 가하는 경우 이온빔의 정류가 금속이 감소해 주입 속도가 낮아져 대랑 생산이 어렵고 장비가 고가라는 단점이 있다. 하지만 플라즈마를 이용한 이온주입법 (Plasma Source Ion Implantation, PSII)은 공정 속도가 빠르고 제조비용이 매우 저렴해 새로운 이온주입법으로 주목받고 있다. PSII법에서 플라즈마 특성은 그 결과에 큰 영향을 미치므로 플라즈마 특성의 적절한 제어가 필수적으로 요구된다. 본 연구에서는 공정압력과 RF power를 변화시키며 플라즈마 밀도 측정했다. 그 결과 공정압력이 증가함에 따라서 플라즈마 밀도는 감소되었고 RF power 증가함에 따라서 플라즈마 밀도는 증가되었다.

  • PDF

Fabrication of Ion Mass Analyzer and its Operational Characteristics (이온질량분석기의 제작과 그 동작특성)

  • Kim, Guang-Hoon;Choi, Young-Wook;Lee, Hong-Sik;Rim, Geun-Hie;Nikiforov, S.A.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.8
    • /
    • pp.401-408
    • /
    • 2001
  • The information of the ion composition in plasma applications is required to characterize a plasma. A better understanding of ion species composition ratio and its spacial distribution, etc. is thus necessary in plasma-related processes, such as thin film deposition, plasma-based ion implantation, semiconductor processing, and so on. In this research, a compact ion mass analyzer that is based on magnetic sector analyzer was developed and its operational characteristics were studied in nitrogen plasma.

  • PDF

Enhancement of Wear Resistance by Low Heat Treatment and the Plasma Source Ion Implantation of Tungsten Carbide Tool (초경 엔드밀의 플라즈마 이온 주입과 저온 열처리를 통한 내마멸성 향상)

  • Kang, Seong-Ki;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.162-168
    • /
    • 2011
  • In this research, nitrogen plasma source ion implantation(PSII) of non-coated tungsten carbide endmill tools was conducted with low heat treatment for increasing wear resistance. After the low heat treatment of PSIIed tools to give a homogeneity of wear resistance, the surface modification of tools was analyzed by hardness test, surface roughness and cutting forces. As for the resultant cutting forces, low heat treatment in temperature of $400^{\circ}C$ and $500^{\circ}C$ is stable because of low cutting resistance. The 20-minutes heat treated tool at spindle speed 25000rpm has superiority of surface roughness, Ra of $0.420{\mu}m$ and was found to have good wear resistance. The higher hardness value was obtained by increasing temperature from $300^{\circ}C$ to $600^{\circ}C$ for PSIIed tools with low heat treatment. As the PSIIed tools under 10minutes at temperature of $600^{\circ}C$ have the highest hardness as Hv of 2349.8, It was analyzed that temperature processing give much influences on hardness.

Efficiency of an SCM415 Alloy Surface Layer Implanted with Nitrogen Ions by Plasma Source Ion Implantation

  • Lyu, Sung-Ki;He, Hui-Bo;Lu, Long;Youn, Il-Joong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.47-50
    • /
    • 2006
  • SCM415 alloy was implanted with nitrogen ions using plasma source ion implantation (PSII), at a dose range of $1{\times}10^{17}\;to\;6{\times}10^{17}\;N^+cm^{-2}$ Auger electron spectrometry (AES) was used to investigate the depth profile of the implanted layer. Friction and wear tests were carried out on a block-on-ring wear tester. Scanning electron microscopy (SEM) was used to observe the micro-morphology of the worn surface. The results revealed that after being implanted with nitrogen ions, the frictional coefficient of the surface layer decreased, and the wear resistance increased with the nitrogen dose. The tribological mechanism was mainly adhesive, and the adhesive wear tended to become weaker oxidative wear with the increase in the nitrogen dose. The effects were mainly attributed to the formation of a hard nitride precipitate and a supersaturated solid solution of nitrogen in the surface layer.

Study of Sheath Dynamics in Plasma Source Ion Implantation (플라즈마 이온주입에서 쉬스 동역학에 관한 연구)

  • Kim, G.H.;Cho, C.H.;Choi, Y.W.;Lee, H.S.;Rim, G.H.;Nikiforov, S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1797-1799
    • /
    • 1998
  • Plasma source ion implantation(PSII) is a non-line-of-sight technique for surface modification of materials which is effective for non-planar targets. A apparatus of 30kV PSII is established and plasma characteristics are diagnosed by using a Langmuir probe. A spherical target is immersed in argon plasma and biased negatively by a series of high voltage pulses. Sheath evolution is measured by using a Langmuir probe and compared with the result of computer simulations.

  • PDF

CHARACTERIXATION OF PLASMA ION IMPLANTED SURFACES USING TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMATRY

  • Lee, Yeon-Hee;Han, Seung-Hee;Lee, Jung-Hye;Yoon, Jung-Hyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.880-883
    • /
    • 1996
  • Plasma Source Ion Implantation (PSII) technique was used for the hydrophilization or hydrophobization of polymer surfaces. Polymers were modified with different plasma gases such as oxygen, nitrogen, argon, and tetrafluoromethane, and for varying lengths of treatment time. Plasma ion treatment of oxygen, nitrogen, argon and their mixtures increased significantly the hydrophilic properties of polymer surfaces. More hydrophobic surfaces of polymers were formed after the treatment with tetrafluoromethane. A study of plasma source ion implanted polymers was performed using contact angle measurements and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The TOF-SIMS spectra and depth profile were used to obtain the information about the treated surfaces of polymers. The permanence of this technique could be evaluated with respect to ageing time. The surfaces treated with PSII gave better stability than other surface modification methods.

  • PDF