• Title/Summary/Keyword: Plasma display panel(PDP)

Search Result 564, Processing Time 0.026 seconds

High Performance and Low Cost Single Switch Energy Recovery Display Driver for AC Plasma Display Panel

  • Han Sang Kyoo;Moon Gun-Woo;Youn Myung Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.723-727
    • /
    • 2004
  • A new high-performance and low cost single switch energy recovery display driver for an AC plasma display panel (PDP) is proposed. Since it is composed of only one auxiliary power switch, two small inductors, and eight diodes compared with the conventional circuit consisting of four auxiliary power switches, two small inductors, eight power diodes, and two external capacitors, it features a much simpler structure and lower cost. Nevertheless, since the rootmean-square (RMS) value of the inductor current is very small, it also has very desirable advantages such as n low conduction loss and high efficiency. Furthermore, there are no serious voltage-drops caused by the large gas-discharge current with the aid of the discharge current compensation, which can also greatly reduce the current flowing through power switches and maintain the panel to light at n lower sustaining voltage. In addition, all main power switches are turned on under the zero-voltage switching (ZVS) and thus, the proposed circuit has a improved EMI, increased reliability, and high efficiency. Therefore, the proposed circuit will be well suited to the wall hanging PDP TV. To confirm the validity of the proposed circuit, circuit operations, features,and design considerations are presented and verified experimentally on a 6-inch PDP, 50kHz-switching frequency, and sustaining voltage 141V based prototype.

  • PDF

Three-level PDP Sustain circuits with Six-switches (Six Switch를 적용한 Three-level PDP Sustain Circuit)

  • Roh, Chung-Wook;Nam, Won-Seok;Han, Sang-Kyoo;Hong, Sung-Soo;SaKong, Suk-Chin;Yang, Hak-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.543-550
    • /
    • 2006
  • A three-level sustain circuit with six-switches for an ac plasma display panel (AC-PDP) drive is proposed. The proposed circuit features half the voltage stresses of sustain switches and clamp diodes and significantly reduced power losses compared with those of the conventional ones. This circuit, realizable with reduced cost of the semiconductor devices, gives a significant improvement in the power efficiency, essential for the design of a drive circuit for the AC-PDP. A comparative analysis and experimental results we presented to show the validity of the proposed sustainer circuit.

Research and Development of High Performance 42-inch XGA Plasma Display Panel

  • Choi, Kwang-Yeol;Min, Byoung-Kuk;Kim, Tae-Hyung;Song, Byung-Soo;Yoo, Eun-Ho;Kim, Jin-Young;Jung, Yun-Kwon;Kim, Won-Tae;Yang, Hee-Chan;Ryu, Jae-Hwa
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.231-235
    • /
    • 2004
  • High performance 42 inch XGA PDP with high luminance of 1,000 cd/$m^2$ has been developed using high efficient electrode structure, discharge gas and closed barrier ribs. For high speed addressing with single scan technique, address discharge time lag was reduced over 40% with FAST driving scheme and new materials. High dark room contrast ratio of 5,000 : 1 was achieved and picture quality was improved using new algorithm for eliminating false contour and improving gray level linearity.

  • PDF

The study on the electrical and optical characteristics of a new structure for color ac plasma displays (새로운 전극구조를 가진 ac-PDP의 전기 광학적 특성에 관한 연구 (I))

  • Lee, Woo-Geun;Shin, Joong-Hong;Kim, Joon-Ho;Kim, Doo-Han;Cho, Jung-Soo;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2227-2229
    • /
    • 1999
  • As a direct-view flat panel displays, there are many devices, such as plasma display panels(PDPs), vacuum fluorescent displays (VFDs), and light emitting diode(LED). Among these, a PDP is the first type of panel display to be made commercially available. A 'Plasma display' is the general term for a flat display utilizing the light emission that is produced by gas discharge. However, the brightness and Luminous efficiency are still not adequate for consumer television. So, the new sustain electrode type of ac PDP was proposed. By arranging the transparent electrode of quadrangle by zigzag, the area of electrode are reduced, and the length of electrode gap is increased. It generates a high luminous efficiency(corresponding to a 40% improvement of standard type), the same discharge voltage characteristics, and the low power consumption at same luminance.

  • PDF

PDP Tubeless Packaging Process Using Glass-to-Glass Vacuum-Electrostatic Bonding (유리-유리 진공-정전 열 접합을 이용한 PDP의 Tubeless 패키징 공정)

  • Ju, Byeong-Gwon;Lee, Deok-Jung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.37-40
    • /
    • 2001
  • New package process for PDP was proposed based on the glass-to-glass vacuum-electrostatic bonding process and tubeless packaging concept derived from the previous study. Hermeticity and operating performance of PDP test panel through the seal-off process application and the possibility for practical use might be high if the process simplicity and productivity-related effort was sequentially carried out.

  • PDF

A Sub-field Rearrangement Driving Method for Reducing Dynamic False Contour in Plasma Display Panels

  • Lee, Seung-Yong;Choi, Byong-Deok
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.30-34
    • /
    • 2006
  • A sub-field rearrangement driving method has been proposed to reduce a DFC (Dynamic False Contour) phenomenon in plasma display panels. The proposed driving method expresses 256 gray levels with 16 sub-fields, while conventional one uses only 8 sub-fields. Notwithstanding the increase in the number of sub-fields, the display time is similar to the conventional 8 sub-fields driving method by appropriate choosing selective writing and selective erasing for sub-fields.

Transparent dielectric layer having color-filter function for PDP

  • Lee, Sung-Wook;Kwon, Tae-In;Lee, Yoon-Kwan;Ryu, Byung-Gil;Yoo, Eun-Ho;Park, Myung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.632-634
    • /
    • 2002
  • Transparent dielectric layer having color-filter function in front panel for PDP(Plasma Display Panel) was successfully fabricated and characterized. Transparent dielectric layer in front panel was made of glass based on $PbO-SiO_2-B_2O_3$ ternary system. The change of properties with content variation of oxide colorants in transparent dielectric layer having color-filter function was systematically accessed. It was demonstrated that the optimized content of oxide colorants to parent glass could greatly increase up contrast ratio and color temperature without significantly degrading luminance.

  • PDF

Variation of the Discharge Characteristics in single-sustainer Driving of an AC PDP

  • Kim, Joong-Kyun;Jung, Hae-Yoon
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.154-159
    • /
    • 2010
  • Single-sustainer driving is an AC PDP driving scheme to reduce the circuitry by maintaining the sustain electrode at ground level. To date, however, the research on the discharge characteristics in such driving scheme is insufficient. In this study, the panel performance and discharge characteristics of the single-sustainer driving scheme were observed while varying the address electrode condition. In single-sustainer driving, the address electrode is strongly involved in the sustain discharge when the former is maintained at ground level, and the dependence of the luminous efficacy on the sustain voltage is different from that in the conventional driving scheme. The dependence of the luminous efficacy on the sustain voltage appeared similar, however, to that in the conventional driving scheme when the address electrode was floated in single-sustainer driving. In the investigation of the temporal evolution of the sustain discharge using an IICCD camera, it was found that the sustain discharge in single-sustainer driving with a floating address electrode is similar to that in the conventional driving scheme, and the strong plasma formation region was located in the vicinity of the MgO surface, which seems to be related to the lifetime of a PDP with single-sustainer driving. In the investigation of the operation characteristics, the PDP that was operated with a floated address electrode showed a narrower dynamic operation margin, but a longer lifetime was expected.

A Novel Current-fed Energy Recovery Sustaining Driver for Plasma Display Panel(PDP)

  • Han, Sang-Kyoo;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A novel current-fed energy-recovery sustaining driver (CFERSD) for a PDP is proposed in this paper. Its main idea is to recover the energy stored in the PDP or to inject the input source energy to the PDP by using the current source built-up in the energy recovery inductor. This method provides zero-voltage-switching (ZVS) of all main power switches, the reduction of EMI, and more improved operational voltage margins with the aid of the discharge current compensation. In addition, since the current flowing through the energy recovery inductor can compensate the plasma discharge current flowing through the conducting power switches, the current stress through all main power switches can be considerably reduced. Furthermore, it features a low conduction loss and fast transient time. Operations, features and design considerations are presented and verified experimentally on a 1020${\times}$l06mm sized PDP, 50kHz-switching frequency, and sustaining voltage 140V based prototype.