• Title/Summary/Keyword: Plasma corrosion

Search Result 333, Processing Time 0.036 seconds

Enhancement of Corrosion Resistance of Mg Sheets with Plasma Surface Treatment (플라스마 표면처리에 의한 마그네슘 판재의 내식성 향상)

  • Yang, Ji-Hun;Jeong, Jae-In;Park, Yeong-Hui;Gwak, Yeong-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.33-33
    • /
    • 2008
  • 산소 플라스마를 이용하여 마그네슘 판재를 표면처리한 후 내식성 변화를 관찰하였다. 마그네슘 판재표면처리 시 표면처리 온도, 표면처리 전압, 공정 가스 유량비 등의 변수에 대한 효과를 분석하여 최적 조건을 도출하였다. 표면처리 온도가 높을 경우, 마그네슘 판재의 내식성이 향상되었으며, 표면처리 전압이 일정한 값보다 높으면 이온의 운동 에너지가 증가하여 마그네슘 판재 표면에 손상을 입혀 오히려 내식성이 나빠지는 현상을 보였다. 공정 가스는 산소만을 사용하여 표면 처리할 경우, 마그네슘 판재의 내식성이 향상되는 현상을 관찰하였다.

  • PDF

A Study on the Anti-Stiction Coating of Glass Lens Mold for Optical Communication (광통신용 글라스렌즈 성형 금형의 이형성 코팅에 관한 연구)

  • Jeong, Woon-Jo;Cho, Jae-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.962-967
    • /
    • 2017
  • The Diamond-Like-Carbon (DLC) coating is a new carbon-based amorphous material. Carbon ions in the plasma are electrically accelerated and collide with the substrate to form a thin film. This film has similar properties to diamonds such as high surface hardness, low coefficient of friction, corrosion resistance and durability that do not react with acids and bases. Also, since there is no thermal deformation, it can be printed at room temperature. and coated on almost all materials such as paper, polymer, ceramics and various metals even aspheric lens it is possible to mirror surface coating with excellent surface roughness. In this paper, we have analyzed the DLC film formed by Filtered Arc Ion Plating (Filtered AIP) process.

Surface Treatment of Mg Alloy Plate for Corrosion Resistance by Glow Discharge Plasma (글로 방전에 의한 마그네슘 판재 내식성 표면처리)

  • Yang, Ji-Hun;Jeong, Jae-In;Park, Yeong-Hui;Lee, Gyeong-Hwang;Jeon, Ung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.17-18
    • /
    • 2007
  • 진공 용기 내에서 펄스 전원 공급 장치를 이용하여 아르곤과 산소 분위기에서 발생시킨 글로 방전으로 마그네슘 판재의 표면을 처리하여 내식성 변화를 관찰하였다. 마그네슘 판재의 내식성 평가를 위하여 염수분무 시험을 실시 하였으며, 마그네슘 판재의 표면 변화를 관찰하기 위해서 x-선 분광기를 이용하였다. 글로 방전에 의해 표면 처리된 마그네슘 판재는 표면처리를 하지 않은 마그네슘 판재보다 높은 내식성을 보여주었다. x-선 분광기 분석결과, 글로 방전에 의해 마그네슘 판재 표면에 산화막이 형성되는 것을 관찰하였다.

  • PDF

The study of corrosion resistance property of stainless steels with Plasma Nitriding Temperature (플라즈마 질화 온도에 따른 스테인레스 강의 내식성 연구)

  • Yeo, Guk-Hyeon;Park, Yong-Jin;Kim, Seong-Cheol;Kim, Sang-Gwon;Lee, Jae-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.309-310
    • /
    • 2012
  • 스테인레스강의 내식성을 향상시키기 위한 고농도 침입형 질화층(S-phase)처리를 하는 논문들이 발표되고 있지만 테스트 시편이 아닌 실제 제품이나 가공품등의 질화 처리 하였을 경우 내식성향상이 아닌 저하되는 것을 볼 수 있다. 스테인레스강의 제품화 과정에서 압연 및 기계가공에서 발생되는 각종 문제, 가공경화로 인한 현상 및 질화 처리후 표면개질의 석출상이나 입계로부터 시작되는 크랙이 내식성을 저감시키는 경향을 살펴보았다. 이러한 경향은 봉재나 두꺼운 소재보다는 가공소재인 판재나 형상이 있는 제품에 더 심하게 나타나는 것을 보여준다. 소재의 관리와 질화 온도 및 여러가지 변수에 의해 최적화 되어 S-phase 질화층을 형성해야 내식특성을 유지 할 수 있다.

  • PDF

Laser Engraving of Plasma Sprayed Ceramic Coatings (플라즈마 용사된 세라믹 코팅층의 레이저 홈가공)

  • Bang, Se Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.142-149
    • /
    • 1997
  • Ceramic-coated anilox roll for printing is resistant to corrosion and wear, and hence has enhanced life and quality. Laser engraving is used typically for machining holes to store ink in this roll. Since engraved hole size and shape are directly related to laser processing parameters, it is necessary to know the rela- tionships among these parameters. In this study, the parameters for engraving of ;oasma sprayed ceramic coatings with Nd:YAG laser were studied. Relationships between hole shape and processing parameters were analyzed. Cr$_{2}$O$_{3}$ceramic was found to be most suitable for Nd:YAG laser engraving. It was found that hole depth can be increased by using higher energy pulses. Effect of using different assistant gases was small to the final results. For better results, it was suggested to use a very stable laser with shorter pulses and higher pulse energy.

  • PDF

Enhancement of the Life of Refractories through the Operational Experience of Plasma Torch Melter (플라즈마토치 용융로 운전경험을 통한 내화물 수명 증진 방안)

  • Moon, Young Pyo;Choi, Jang Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2016
  • The properties of wastes for melting need to be considered to minimize the maintenance of refractory and to discharge the molten slags smoothly from a plasma torch melter. When the nonflammable wastes from nuclear facilities such as concrete debris, glass, sand, etc., are melted, they become acid slags with low basicity since the chemical composition has much more acid oxides than basic oxides. A molten slag does not have good characteristics of discharge and is mainly responsible for the refractory erosion due to its low liquidity. In case of a stationary plasma torch melter with a slant tapping port on the wall, a fixed amount of molten slags remains inside of tapping hole as well as the melter inside after tapping out. Nonmetallic slags keep the temperature higher than melting point of metal because metallic slags located on the bottom of melter by specific gravity difference are simultaneously melted when dual mode plasma torch operates in transferred mode. In order to minimize the refractory erosion, the compatible refractories are selected considering the temperature inside the melter and the melting behavior of slags whether to contact or noncontact with molten slags. An acidic refractory shall not be installed in adjacent to a basic refractory for the resistibility against corrosion.

Dimethyl Carbonate Synthesis by Methanol Oxidative Carbonylation (메탄올 산화 카르보닐화에 의한 디메틸카보네이트 합성)

  • Nam, Jeong-Kwang;Cho, Deug-Hee;Suh, Jeong-Kwon;Kim, Seong-Bo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.530-534
    • /
    • 2011
  • The synthesis of dimethyl carbonate by liquid phase oxidative carbonylation of methanol was studied under batch reaction system. Reaction factors such as effect on various metals, anion containing in copper catalyst, temperature, carbon monoxide and oxygen molar ratio and copper content were investigated. In particular $CuCl_2{\cdot}2H_2O$ showed the excellent of the methanol conversion 65.2%, DMC selectivity 96.6% reaction condition under 1.0 g, $150^{\circ}C$, MeOH/CO/$O_2$=0.2/0.215/0.05 (molar ratio). $CuCl_2$ led to corrosion of the reactor. Thus, a new catalyst system using supports was investigated to resolve these corrosion problem. Influence on various supports were examined and copper catalyst supported on zeolite Y showed the most excellent activity on the formation of dimethyl carbonate. The amount of Fe dissolved during the reaction using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometer) was compared with catalysts, calcined Cu/zeolite Y showed the lower value below 5% than $CuCl_2-2H_2O$.

A comparative study of physical properties of $TiO_2$ thin films according to a coating method on orthodontic wires and brackets (교정용 와이어 및 브라켓에 이산화티탄 광촉매 코팅 시 코팅방법에 따른 비교연구)

  • Koh, Eun-Hee;Cho, Jin-Hyoung
    • The korean journal of orthodontics
    • /
    • v.36 no.6
    • /
    • pp.451-464
    • /
    • 2006
  • The purpose of this study was to search for an appropriate method of coating $TiO_2$ on orthodontic appliances. $TiO_2$ thin films were deposited on orthodontic wires and brackets using sol-gel, CVD (Chemical Vapor Deposition) and PE-CVD (Plasma Enhanced-CVD) methods. The roughness of $TiO_2$-coated surfaces was investigated via scanning electron microscope (SEM) and adhesive strength of $TiO_2$ thin films was measured by adhesive tape pull test. Methylene blue degradation test was carried out to evaluate the photocatalytic activity of $TiO_2$ and the corrosion resistance of $TiO_2$ thin films against fluoride solution was also analyzed by observing the surfaces of $TiO_2$-coated wires and brackets via SEM after immersion in sodium fluoride solution. Through the comparison of properties and photocatalytic activity of $TiO_2$ thin films according to the coating methods, the following results were obtained. Smoother surfaces of $TiO_2$ thin films were generated by CVD or PE-CVD methods than through the sol-gel method or the control. Adhesive strength of the $TiO_2$ thin films was highest in PE-CVD and gradually became lower in the order of CVD, then the sol-gel method. Photocatalytic activity of $TiO_2$ thin films on methylene blue was the highest in PE-CVD and gradually became lower in the order of CVD, then the sol-gel method. Corrosion resistance of $TiO_2$ thin films against fluoride solution was stronger in CVD and PE-CVD methods than in the sol-gel method. The results of this study suggest that the CVD or PE-CVD methods is more appropriate than the sol-gel method for $TiO_2$ coating on orthodontic wires and brackets.

The Performance Test on Me-DLC Films for Improving Wear Resistance of LM-Guide (LM 가이드의 내마모성 향상을 위한 Me-DLC 코팅박막의 성능평가)

  • Kang, Eun-Goo;Lee, Dong-Yoon;Kim, Seong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • Recently, surface modification technology is of importance to improve the wear resistance and the corrosive resistance for high accurate mechanical parts such as LM guide, Ball Screw and Roller Bearing etc., Those has generally featured on rolling contact mechanism to improve not only the wear and the friction, but also the accuracy and the corrosion performances. For surface modifications of high accurate mechanical parts, normally thermal spray, PVD, CVD and E.P. processes have been used with many materials such as DLC, raydent, W, Ni, Ti etc. Diamondlike carbon (DLC) films possess a combination of attractive properties and have been largely employed to modify the tribological behaviors such as friction, wear, corrosion, fretting fatigue, biocompatibility, etc. However, for rolling contact mechanism mechanical parts DLC films are needed to study for commercial benefit. Rolling contact mechanism has features on effects of cyclic motions and stresses, and also not simply sliding motions. The papers focused on the performance test of wear and corrosive resistance according to Me-DLC film thickness. And also, its thickness effect of wear analysis was carried out through the simulation of the maximum shear stress under the rolling contact surface. As the results, Me-DLC films have more potential to improve the wear resistance for high precision mechanical parts than raydent films.

Material Properties of Ni-P-B Electrodeposits for Steam Generator Tube Repair

  • Kim, Dong Jin;Seo, Moo Hong;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.112-117
    • /
    • 2004
  • This work investigated the material properties of Ni-P-B alloy electrodeposits obtained from a Ni sulfamate bath as a function of the contents of the P and B sources($H_3PO_3$ and dimethyl amine borane complex(DMAB), respectively) with/without additives. Chemical composition, residual stress, microstructure and micro hardness were investigated using ICP(inductively coupled plasma) mass spectrometer, flexible strip, XRD, TEM and micro Vickers hardness tester, respectively. From the results of the compositional analysis, it was observed that P and B are incorporated competitively during the electrodeposition and the sulfur from the additive is codeposited into the electrodeposit. The measured residual stress value increased in the order of Ni, Ni-P, Ni-B and Ni-P-B electrodeposits indicating that boron affects the residual tensile stress greater than phosphorus. As the contents of the alloying element sources of P and B increased, crystallinity and the grain size of the electrodeposit decreased. The effect of boron on crystallinity and grain size was also relatively larger than the phosphorus. It can be explained that the boron with a smaller atomic radius contributes to the increase of residual stress in the tensile direction and the larger restraining force against the grain growth more significantly than the phosphorus with a larger atomic radius. Introduction of an additive into the bath retarded crystallization and grain growth, which may be attributed to the change of the grain growth kinetics induced by the additive adsorbed on the substrate and electrodeposit surfaces during electrodeposition.