• 제목/요약/키워드: Plasma corrosion

검색결과 333건 처리시간 0.028초

침탄된 316L 스테인리스 강의 접촉저항 및 내식 특성 (The Contact Resistance and Corrosion Properties of Carburized 316L Stainless Steel)

  • 홍원혁;고석진;장동수;이정중
    • 한국표면공학회지
    • /
    • 제46권5호
    • /
    • pp.192-196
    • /
    • 2013
  • Stainless steels (AISI 316L) are carburized by Inductively coupled plasma using $CH_4$ and Ar gas. The ${\gamma}_c$ phase(S-phase) is formed on the surface of stainless steel after carburizing process. The XRD peak of carburized samples is shifted to lower diffracting angle due to lattice expansion. Overall, the thickness of ${\gamma}_c$ phase showed a linear dependence with respect to increasing temperature due to the faster rate of diffusion of carbon. However, at temperatures above 500, the thickness data deviated from the linear trend. It is expected that the deviation was caused from atomic diffusion as well as other reactions that occurred at high temperatures. The interfacial contact resistance (ICR) and corrosion resistance are measured in a simulated proton exchange membrane fuel cell (PEMFC) environment. The ICR value of the carburized samples decreased from 130 $m{\Omega}cm^2$ (AISI 316L) to about 20 $m{\Omega}cm^2$. The sample carburized at 200 showed the best corrosion current density (6 ${\mu}Acm^{-2}$).

Fluorine Plasma Corrosion Resistance of Anodic Oxide Film Depending on Electrolyte Temperature

  • Shin, Jae-Soo;Kim, Minjoong;Song, Je-beom;Jeong, Nak-gwan;Kim, Jin-tae;Yun, Ju-Young
    • Applied Science and Convergence Technology
    • /
    • 제27권1호
    • /
    • pp.9-13
    • /
    • 2018
  • Samples of anodic oxide film used in semiconductor and display manufacturing processes were prepared at different electrolyte temperatures to investigate the corrosion resistance. The anodic oxide film was grown on aluminum alloy 6061 by using a sulfuric acid ($H_2SO_4$) electrolyte of 1.5 M at $0^{\circ}C$, $5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, and $20^{\circ}C$. The insulating properties of the samples were evaluated by measuring the breakdown voltage, which gradually increased from 0.43 kV ($0^{\circ}C$) to 0.52 kV ($5^{\circ}C$), 1.02 kV ($10^{\circ}C$), and 1.46 kV ($15^{\circ}C$) as the electrolyte temperature was increased from $0^{\circ}C$ to $15^{\circ}C$, but then decreased to 1.24 kV ($20^{\circ}C$). To evaluate the erosion of the film by fluorine plasma, the plasma erosion and the contamination particles were measured. The plasma erosion was evaluated by measuring the breakdown voltage after exposing the film to $CF_4/O_2/Ar$ and $NF_3/O_2/Ar$ plasmas. With exposure to $CF_4/O_2/Ar$ plasma, the breakdown voltage of the film slightly decreased at $0^{\circ}C$, by 0.41 kV; however, the breakdown voltage significantly decreased at $20^{\circ}C$, by 0.83 kV. With exposure to $NF_3/O_2/Ar$ plasma, the breakdown voltage of the film slightly decreased at $0^{\circ}C$, by 0.38 kV; however, the breakdown voltage significantly decreased at $20^{\circ}C$, by 0. 77 kV. In addition, for the entire temperature range, the breakdown voltage decreased more when sample was exposed to $NF_3/O_2/Ar$ plasma than to $CF_4/O_2/Ar$ plasma. The decrease of the breakdown voltage was lower in the anodic oxide film samples that were grown slowly at lower temperatures. The rate of breakdown voltage decrease after exposure to fluorine plasma was highest at $20^{\circ}C$, indicating that the anodic oxide film was most vulnerable to erosion by fluorine plasma at that temperature. Contamination particles generated by exposure to the $CF_4/O_2/Ar$ and $NF_3/O_2/Ar$ plasmas were measured on a real-time basis. The number of contamination particles generated after the exposure to the respective plasmas was lower at $5^{\circ}C$ and higher at $0^{\circ}C$. In particular, for the entire temperature range, about five times more contamination particles were generated with exposure to $NF_3/O_2/Ar$ plasma than for exposure to $CF_4/O_2/Ar$ plasma. Observation of the surface of the anodic oxide film showed that the pore size and density of the non-treated film sample increased with the increase of the temperature. The change of the surface after exposure to fluorine plasma was greatest at $0^{\circ}C$. The generation of contamination particles by fluorine plasma exposure for the anodic oxide film prepared in the present study was different from that of previous aluminum anodic oxide films.

수화과정에서 전처리가 알루미늄 합금의 용출에 미치는 효과 (Effect of Pretreatment on the Dissolution of Aluminum Alloy during Hydration Process)

  • 이병구;이호연;탁용석
    • Corrosion Science and Technology
    • /
    • 제12권5호
    • /
    • pp.215-219
    • /
    • 2013
  • Aluminum alloy(3003) can be dissolved during hydration process with hot tap water. In order to increase the stability of aluminum alloy, it was pretreated with anodization and phosphoric acid before hydration process. The effect of pretreatment on the surface property changes was analyzed with X-ray Photoelectron Spectroscopy (XPS) and Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) and their results supported that the increase of hydroxyl group (-OH) on the surface formed during anodization and phosphorous acid treatment prevented the dissolution of aluminum alloy during hydration process at high temperature.

The Effects Nitrogen percentage and Processing Time on the AISI 420 martensitic stainless steel during Plasma nitriding

  • 이인섭
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.289-290
    • /
    • 2015
  • In this experiment, nitriding treatment has been performed at $400^{\circ}C$ with various $N_2$ content and with changing processing time on AISI 420 martensitic stainless steel to investigate the expanded martensite layer (${\alpha}^{\prime}_N$ layer) formation behavior. Nitriding was implemented with changing $N_2$ content from 10% to 25% for 15 hrs and processing time was changed from 4hr to 15hr at 25% $N_2$ content. After treatment, the behavior of the ${\alpha}^{\prime}_N$ layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. It was found that the surface hardness and ${\alpha}^{\prime}_N$ layer thickness increases with increasing $N_2$ percentage and processing time. Although their corrosion behaviors are worse than the bare sample.

  • PDF

High-temperature Oxidation of Nano-multilayered AlTiSiN Thin Films deposited on WC-based carbides

  • Hwang, Yeon Sang;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • 제12권3호
    • /
    • pp.119-124
    • /
    • 2013
  • Nano-multilayered, crystalline AlTiSiN thin films were deposited on WC-TiC-Co substrates by the cathodic arc plasma deposition. The deposited film consisted of wurtzite-type AlN, NaCl-type TiN, and tetragonal $Ti_2N$ phases. Their oxidation characteristics were studied at 800 and $900^{\circ}C$ for up to 20 h in air. The WC-TiC-Co oxidized fast with large weight gains. By contrast, the AlTiSiN film displayed superior oxidation resistance, due mainly to formation of the ${\alpha}-Al_2O_3$-rich surface oxide layer, below which an ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale existed. Their oxidation progressed primarily by the outward diffusion of nitrogen, combined with the inward transport of oxygen that gradually reacted with Al, Ti, and Si in the film.

A Study on Development of Advanced Environmental-Resistant Materials Using Metal Ion Processing

  • Fujita Kazuhisa;Kim Hae-Ji
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1670-1679
    • /
    • 2006
  • The development of the oxidation, wear and corrosion resistant materials that could be used in severe environmental conditions is needed. The elementary technologies for surface modification include ion implantation and/or thin film coating. Furthermore, in order to develop ion implantation technique to the specimens with three-dimensional shapes, plasma-based ion implantation (PBII) techniques were investigated. As a result, it was found that the ion implantation and/or thin film coating used in this study were/was effective for improving the properties of materials, which include implantations of various kinds of ions into TiAl alloy, TiN films formed on surface of base material and coatings in high-temperature steam. The techniques proposed in this study provide useful information for all of the material systems required to use at elevated temperature. For the practical applications, several results will be presented along with laboratory test results.

Controlling the surface energy and electrical properties of carbon films deposited using unbalanced facing target magnetron sputtering plasmas

  • Javid, Amjed;Kumar, Manish;Yoon, Seok Young;Lee, Jung Heon;Han, Jeon Geon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.231.1-231.1
    • /
    • 2015
  • Surface energy, being an important material parameter to control its interactions with the other surfaces plays a key role in bio-related application. Carbon films are found very promising due to their characteristics such as wear and corrosion resistant, high hardness, inert, low resistivity and biocompatibility. The present work deals with the deposition of carbon films using unbalanced facing target magnetron sputtering technique. The discharge characteristics were studied using optical emission spectroscopy and correlated with the film properties. Surface energy was investigated through contact angle measurement. The ID/IG ratio as calculated from Raman spectroscopy data increases with the increase in power density due to the higher number of sp2 clusters embedded in the amorphous matrix. The deposited films were smooth and homogeneous as observed by Atomic force microscopy having RMS roughness in the range of 1.74 to 2.25 nm. It is observed that electrical resistivity and surface energy varies in direct proportionality with operating pressure and has inverse relation with power density. The surface energy results clearly exhibited that these films can have promising applications in cell cultivation.

  • PDF

마그네슘 합금의 플라즈마전해산화 처리 기술 (Plasma Electrolytic Oxidation Treatment of Magnesium Alloys)

  • 문성모;김예진
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.123.2-123.2
    • /
    • 2016
  • Mg alloys have been developed for automobile and mobile equipments because of their low density of $1.7g/cm^3$. One of the main problems of Mg alloys is their poor corrosion resistance which has limited their wide applications. Plasma electrolytic oxidation (PEO) method is one of the promising surface treatment methods for Mg alloys. In this presentation, experimental data about the effects of solution composition and form of current are presented and discussed in view of dielectric breakdown and reformation of PEO films The role of various anions of phosphate, silicate, fluoride, carbonate and hydroxide ions is discussed in view of film breakdown and reformation of PEO films.

  • PDF

304L 스테인리스 강의 플라즈마 질화처리 (Plasma Assisted Nitriding of Stainless Steel Type 304L)

  • 박정렬
    • 열처리공학회지
    • /
    • 제8권4호
    • /
    • pp.255-265
    • /
    • 1995
  • Stainless steel type 304L has been nitrided in the low pressure (600Pa) and high nitrogen (80% $N_2$+20% $H_2$) environment for 5 hours by the square-wave-pulsed-d.c. plasma as a function of temperature $400{\sim}550^{\circ}C$ and pulsation. At the lower temperature range of $400{\sim}500^{\circ}C$ and at the relatively high ratio of pulse duration to pulse period. "S-phase" has been developed in the form of thin nitrided surface layer which has many cracks, leading to be nearly impossible for the industrial anti-wear and anti-corrosion applications. At the higher temperature up to $550^{\circ}C$ with the increasing ratio of the pulse duration to pulse period up to $50{\mu}s/100{\mu}s$, the nitrided layer, whose growth rate has increased also, has been composed mainly of CrN and $Fe_4N$ phases and has become thick, uniform and nearly crack-free.

  • PDF

DC 스퍼터법과 유도결합형 플라즈마 스퍼터법으로 증착된 HfN 코팅막의 물성 비교연구 (A Comparative Study of Nanocrystalline HfN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering)

  • 전성용;이소연
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.103.1-103.1
    • /
    • 2017
  • Nanocrystalline HfN coatings were prepared by reactively sputtering Hf metal target with N2 gas using a magnetron sputtering system operated in DC and ICP (inductively coupled plasma) condition with various powers. The effects of ICP power, ranging from 0 to 200 W, on the coating microstructure, corrosion and mechanical properties were systematically investigated with FE-SEM, AFM, potentiostat and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of HfN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Average grain size and nano hardness of HfN coatings were also investigated with increasing ICP powers.

  • PDF