• Title/Summary/Keyword: Plasma boundary

Search Result 111, Processing Time 0.023 seconds

Determining plasma boundary in Alvand-U tokamak

  • Yahya Sadeghi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3485-3492
    • /
    • 2023
  • One of the major topic of tokamak research is the determination of the magnetic profile due to magnetic coil fields and plasma current by mean of data from magnetic probes. The most practical approach is to use the current filament method, which models the plasma column with multiple current carrying filaments and the total current of these filaments is equal to the plasma current. Determining the plasma boundary in Alvand-U tokamak is the main purpose of this paper. In order to determine the magnetic field profile and plasma boundary, information concerning the magnetic coils, their position, and current is required in the computing code. Then, the plasma shape is determined and finally the plasma boundary is extracted by the code. In the conducted research, we discuss how to determine the plasma boundary and the performance of the computing code for extraction of the plasma boundary. The developed algorithm shows to be effective by running it in the regular pc machine with characteristics of Intel (R) core (TM) i3-10100 CPU @3.60 GHz and 8.00 GB of RAM. Finally, we present results of a test run for computing code using a typical experimental pulse.

Control of Outmost Poloidal Flux Surface of Tokamak Plasma in RTP (RTP에서 토카막 플라즈마의 폴로이달 등자속면 제어)

  • Lee, Kwang-Won;Oh, Byung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.136-147
    • /
    • 1993
  • The paper describes : ⅰ) Mathematical modeling of poloidal flux to define and calculate the tokamak plasma position based on a property of the plasma boundary which is always a flux surface. Controlling the plasma boundary position is therefore equivalent to equalizing the flux value on several points belonging to a curve tangent to the limiter. ⅱ) Experimental method for determining the outmost poloidal isoflux surface by a linear combination of measurements of magnetic fluxes, fields and field gradients, without requiring knowledge of internal plasma parameters for the feedback control, i.e., with neither corrections for variation in the poloidal beta and the plasma current distribution, nor compensations for the induced currents in the vacuum vessel. ⅲ) Feedback control algorithm for the regulation of plasma boundary position and its electronics hardware based on the PID control theory. ⅳ) Experimental results obtained from the RTP tokamak experiments using the present plasma control system.

  • PDF

Observation of Transition Boundary between Cold, Dense and Hot, Tenuous Plasmas in the Near-Earth Magnetotail

  • Kim, Hee-Eun;Lee, Ensang
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.95-104
    • /
    • 2020
  • Properties of plasmas that constitute the plasma sheet in the near-Earth magnetotail vary according to the solar wind conditions and location in the tail. In this case study, we present multi-spacecraft observations by Cluster that show a transition of plasma sheet from cold, dense to hot, tenuous state. The transition was associated with the passage of a spatial boundary that separates the plasma sheet into two regions with cold, dense and hot, tenuous plasmas. Ion phase space distributions show that the cold, dense ions have a Kappa distribution while the hot, tenuous ions have a Maxwellian distribution, implying that they have different origins or are produced by different thermalization processes. The transition boundary separated the plasma sheet in the dawn-dusk direction, and slowly moved toward the dawn flank. The hot, tenuous plasmas filled the central region while the cold, dense plasmas filled the outer region. The hot, tenuous plasmas were moving toward the Earth, pushing the cold, dense plasmas toward the flank. Different types of dynamical processes can be generated in each region, which can affect the development of geomagnetic activities.

Al corrosion phenomena on the Al grain boundary after AlCu plasma etching (AlCu 플라즈마 식각후 Al 결정입계에서 Al 부식현상)

  • 김창일;권광호;윤선진;김상기;백규하;남기수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.47-52
    • /
    • 1996
  • Cl-based gas chemistry is generally used to etching for al alloy metallization. After the etching of Al alloy with Cl-based gas plasma, residual chlorine on Al alloy reacts with H$_{2}$O due to air exposure and results in Al corrosion. In this study, the corrosion phenomena of Al wer examined with XPS(X-ray photoelectron spectroscopy) and SEM (scanning electorn microscopy). It was confirmed that chlorine mainly existed at the grian boundary of Al alloy after plasma etching of Al alloy with cl-based gas chemistry and Al corrosion was largely generated at the grain boundary of Al alloy. And residual chlorine was passivated by sulfur and fluorine which were generated by SF$_{6}$ plasma. These effects of passivation reduced the Al corrosion due to air exposure.

  • PDF

I-V Characteristics of Negatively DC Pulsed Target in ECR Plasma for Landmine Detection (지뢰탐지를 위한 ECR 플라즈마에서 타깃에 고전압 DC 펄스 인가시 전압-전류 특성 분석)

  • Kim, Seong Bong;Lee, Hui Jea;Park, Seungil;Yoo, Suk Jae;Cho, Moohyun;Han, Seung-Hoon;Lim, Byeongok
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.53-56
    • /
    • 2014
  • I-V characteristics of a cylindrical target in an ECR plasma were studied for sheath spatial evolutions when the target was pulsed biased to a high negative potential. The magnetic field effects on sheath thickness and sheath boundary speed were investigated by comparison between the experimental results and the theoretical results using the Child-Langmuir sheath model. The results showed that the magnetic field suppressed electron motion away from the target so that sheath thickness and sheath boundary speed decreased.

Numerical Modeling of Floating Electrodes in a Plasma Processing System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.102-110
    • /
    • 2015
  • Fluid model based numerical analysis is done to simulate a plasma processing system with electrodes at floating potential. $V_f$ is a function of electron temperature, electron mass and ion mass. Commercial plasma fluid simulation softwares do not provide options for floating electrode boundary value condition. We developed a user subroutine in CFD-ACE+ and compared four different cases: grounded, dielectric, zero normal electric field and floating electric potential for a 2D-CCP (capacitively coupled plasma) with a ring electrode.

Corrosion at the Grain Boundary and a Fluorine-Related Passivation Layer on Etched Al-Cu (1%) Alloy Surfaces

  • Baek, Kyu-Ha;Yoon, Yong-Sun;Park, Jong-Moon;Kwon, Kwang-Ho;Kim, Chang-Il;Nam, Kee-Soo
    • ETRI Journal
    • /
    • v.21 no.3
    • /
    • pp.16-21
    • /
    • 1999
  • After etching Al-Cu alloy films using SiCl4/Cl_2/He/CHF3 mixed gas plasma, the corrosion phenomenon at the grain boundary of the etched surface and a passivation layer on the etched surface with an SF6 plasma treatment subsequent to the etching were studied. In Al-Cu alloy system, corrosion occurs rapidly on the etched surface by residual chlorine atoms, and it occurs dominantly at the grain boundaries rather than the crystalline surfaces. To prevent corrosion, the SF6 gas plasma treatment subsequent to etching was carried out. The passivation layer is composed of fluorine-related compounds on the etched Al-Cu surface after the SF6 treatment, and it suppresses effectively corrosion on the surface as the SF6 treatment pressure increases. Corrosion could be suppressed successfully with the SF6 treatment at a total pressure of 300 mTorr. To investigate the reason why corrosion could be suppressed with the SF6 treatment, behaviors of chlorine and fluorine were studied by various analysis techniques. It was also found that the residual chlorine incorporated at the grain boundary of the etched surface accelerated corrosion and could not be removed after the SF6 plasma treatment.

  • PDF

Design of the Experimental Simulator of Magnetic Sails

  • Funaki, Ikkoh;Fujita, Kazuhisa;Yamakawa, Hiroshi;Ogawa, Hiroyuki;Nonaka, Satoshi;Nakayama, Yoshinori
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.278-281
    • /
    • 2004
  • To realize magnetic sails, momentum of the solar wind should be efficiently transferred to a spacecraft via magnetic field, which is produced around a spacecraft. In this paper, two important physical processes are addressed: 1) diffusive processes caused by plasma turbulence at the magnetospheric boundary around the spacecraft; and 2) field aligned current loops that will electrically connect the magnetospheric boundary and the spacecraft. The idea of the magnetic sails will be demonstrated by an experimental simulator, in which a fast plasma beam will penetrate into a dipole magnetic field. For that purpose, the two important physical processes should be scaled down to a small laboratory experiment in a space chamber. From the scaling considerations, the interaction can be scaled down if high-speed and high-density $(10^{19}m^{-3})$ plasma jet is used with 1-T-class magnetic field.

  • PDF

아크 용접에서 구동력에 따른 열 및 물질 유동에 관한 연구

  • 김원훈;나석주
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.27-41
    • /
    • 1996
  • In this study the heat transfer and fluid flow of the molten pool in stationary gas tungsten arc welding using argon shielding gas were investigated. Transporting phenomena from the welding arc to the base material surface, such as current density, heat flux, arc pressure and shear stress acting on the weld pool surface, were taken from the simulation results of the corresponding welding arc. Various driving forces for the weld pool convection were considered, self-induced electromagnetic, surface tension, buoyancy, and impinging plasma arc forces. Furthermore, the effect of surface depression due to the arc pressure acting on the molten pool surface was considered. Because fusion boundary has a curved and unknown shape during welding, a boundary-fitted coordinate system was adopted to precisely describe the boundary for the momentum equation. The numerical model was applied to AISI 304 stainless steel and compared with the experimental results.

  • PDF

Compressional MHD wave transport in the boundary region between cold and hot plasmas

  • Park, Seong-Kook;Lee, Dong-Hun;Kim, Ki-hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.40-40
    • /
    • 2003
  • When the magnetotail is disturbed by an impulsive input such as the substorm onset, compressional magnetohydrodynamic (MHD) waves play an important role in delivering perturbed energy and exciting various wave modes and currents. The plasmasheet, in which relatively hot plasmas exist, is surrounded by relatively cold plasmas at the plasma sheet boundary layer (PSBL) and the equatorial plasmasphere. Since the Alfven speed significantly varies near these regions, the compressional waves are expected to undergo mode conversion by inhomogeneity at the boundary between cold and hot plasma regions. We investigate how the initial compressional MHD wave energy is reflected, transmitted, and absorbed across that boundary by adopting the invariant imbedding method (IIM) which gives the exact reflection, transmission, and absorption coefficients without any theoretical approximations for given frequencies and wave numbers. The IIM method is very useful in quantifying the reflection and transmission of compressional waves in the sense that we can calculate how much fast mode wave energy is delievered into shear Alfven waves or field-aligned currents. Our results show that strongly localized absorption occurs at the boundary region. This feature suggests that localized field-aligned currents can be impulsively excited at such boundary regions by any compressional disturbances, which is highly associated with impulsive auroral brightening at the substorm onset. We compare our results with previous studies in cold inhomogeneous plasmas.

  • PDF