• Title/Summary/Keyword: Plasma Welding

Search Result 280, Processing Time 0.023 seconds

Analysis on behavior of keyhole and plasma using photodiode in laser welding of aluminum 6000 alloy (포토 다이오드를 이용한 6000계열 알루미늄 합금의 레이저 용접에서 키홀 및 플라즈마의 거동 해석)

  • Park Y. W.;Park H. S.;Rhee S. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.11-24
    • /
    • 2004
  • In automotive industry, light weight vehicle is one of issues because of the air pollution and the protection of environment. Therefore, automotive manufacturers have tried to apply light materials such as aluminum to car body. Aluminum welding using laser has some advantages high energy density and high productivity. It is very important to understand behavior of plasma and keyhole in order to improve weld quality and monitor the weld state. In this study, spectral analysis was carried out to verify the spectrum for plasma which is generated in laser welding of A 6000 aluminum alloy. Two photodiodes which cover the range of plasma wavelength was used to measure light emission during laser welding according to assist gas flow rate and welding speed. Analysis of relationship between sensor signals of welding variables and formation of keyhole and plasma is performed. To determine the level of significance, analysis of variation (ANOVA) was carried out.

  • PDF

Characteristics of Plasma Emission Signals in Fiber Laser Welding of API Steel (III) -The Effect on Plasma Emission Signals by Shield Gas- (API강재의 파이버레이저 용접시 유기하는 플라즈마의 방사특성 (III) - 보호가스가 플라즈마 방사 신호에 미치는 영향 -)

  • Lee, Chang-Je;Kim, Jong-Do;Kim, Yu-Chan
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.60-65
    • /
    • 2013
  • Ar, $N_2$, and He are the conventional kind of shield gas that are used for laser welding. Many researches on the impact of laser welding shield gas have been done, and it is on going until now. However, there are few studies that analyze the changes and differences of the plasma emission signal. Therefore, in this study, we evaluated the change in the penetration characteristics according to the type of shield gas during fiber laser welding impacts to the plasma signal. As a result, if was checked that the difference in molecular weight of Ar, $N_2$, and He affects to the amount of spatter, and also found that the measured plasma radiation signal changes similar to the order of the molecular weight of the gases. Especially, clear change on the signal intensity per each shield gas was measured through RMS, and found that the shield gas was nothing to do with the FFT analyzed result.

A Study on the Monitoring of Laser Welding for S45C Steel Sheets Using Nd:YAG Laser with Continuous Waves (연속파형 Nd:YAG레이저를 이용한 S45C 강판의 레이저 용접 모니터링에 관한 연구)

  • Kim, Do-Hyoung;Shin, Ho-Jun;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.814-823
    • /
    • 2012
  • Fluctuation of light intensity from the keyhole becomes more significant in full penetration welding than partial penetration welding, since the plasma produced in the keyhole can escape from the rear side of the keyhole. The plasma optical radiation emitted during Nd:YAG laser welding of S45C steel samples has been detected with a Photodiode and analyzed under different process conditions. As the results, the BOP was performed for welding, behavior of plasma, spatter or plume was monitored to determine the reference signal. Then, random combination was made for comparison with the reference signal, which aimed at verifying reliability of the welding monitoring system that this study intended to develop.

Fundamental Study on the Weld Defects and Its Real-time Monitoring Method (레이저 용접시 용접결함의 실시간 모니터링법 개발에 관한 연구)

  • 김종도
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.26-33
    • /
    • 2002
  • This study was undertaken to obtain the fundamental knowledges on the weld deflects and it's realtime monitoring method. The paper describes the results of high speed photography, acoustic emission (AE) detection and plasma light emission (LE) measurements during $CO_2$ laser welding of STS 304 stainless steel and A5083 aluminum alloy in different welding condition. The characteristic frequencies of plasma and keyhole fluctuations at different welding speed and shield gases were measured and compared with the results of Fourier analyses of temporal AE and LE spectra, and they had considerably good agreement with keyhole and plasma fluctuation. Namely, the low frequency peaks of AE and LE shifted to higher frequency range with the welding speed increase, and leer the argon shield gas it was higher than that in helium and nitrogen gases. The low frequencies dominating in fluctuation spectra of LE probably reflect keyhole opening instability. It is possible to monitor the weld bead deflects by analyzing the acoustic and/or plasma light emission signals.

Effect of welding condition on microstructures of weld metal and mechanical properties in Plasma-MIG hybrid welding for Al 5083 alloy (알루미늄 5083 합금의 플라즈마 미그 하이브리드 용접시 용접부 미세조직과 기계적 성질 변화에 미치는 용접조건의 영향)

  • Park, Sang-Hyeon;Lee, Hee-Keun;Kim, Jin-Young;Chung, Ha-Taek;Park, Young-Whan;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • The effect of welding condition on microstructure and mechanical property of Plasma-MIG Hybrid Weld between Al 5083 plates(thickness : 10mm) was investigated. 1 pass weld without any defects such as puckering, undercut, and lack of fusion was obtained by 150~200A of plasma current and 5~7mm of welding speed. Gas porosities and shrinkage porosities were existed in the weld near fusion line. As welding speed and plasma current were decreasing, the area fraction of porosity was increasing. The hardness of the weld is increasing as welding speed. On the basis of microstructural analysis, Mg segregated region near dendrite boundaries tends to increase with the welding speed. In the result of hardness test, Distribution of hardness in fusion zone showed little change with the plasma current. However, when the welding speed increased, hardness in weld metal markdly increased. It could be considered that effect of heat input to growth of the dendritic solidification structures. Based on tensile test, tensile properties of weld metal was predominated by area fraction of porosities. Consequently, tensile properties can be controlled by formation site and area fraction of porosity.

Comparison on Autogenous Weldability of Stainless Steel using High Energy Heat Source (고에너지 열원에 따른 스테인리스강의 제살용접특성 비교)

  • Kim, Jong-Do;Lee, Chang-Je;Song, Moo-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1076-1082
    • /
    • 2012
  • Today the welding for LNG carrier is known to be possible using arc and plasma arc welding process. But because of the lower energy density, arc welding is inevitable to multi-pass welding for thick plate and has a limit of welding speed compared to laser which is high energy density heat source. When thick plate is welded, weld defect by multi-pass welding and heat-affected zone by high heat-input were formed. Therefore one-pass welding by key-hole has been considered to work out the problems. It is possible for Laser, electron beam, plasma process to do key-hole welding. Nowadays, plasma process has been used for welding membrane of cargo tank for LNG carrier instead of arc process. Recently, many studies have examined to apply laser process to welding of membrane. In this paper, weldability, microstructure and mechanical properties of stainless steel for LNG carrier welded by fiber laser were compared to those by plasma. As a result, although the laser welding has several times faster speed, similar properties and smaller weld and heat affected zone were obtained. Consequently, this study proves the superiority of fiber laser welding for LNG carrier.

Effect of Welding Condition and Roller on Weldability of Al Coated Steel Sheet using Plasma Arc Welding (박판 알루미늄 도금강판의 플라즈마 용접성에 미치는 용접조건 및 롤러의 영향)

  • Lee, Tae-Woo;Park, Cheol-Ho;Kang, Nam-Hyun;Kim, Myung-Duk
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.54-58
    • /
    • 2012
  • Al-coated steel sheets with excellent heat and corrosion resistance are widely used in various applications. In welding of thin plate, some defects such as unmelted zone and metal-through occur easily in the beginning and ending of welding line. In the study, the welding defects in Al-coated steel sheets were investigated with respect to plasma arc current, height between Cu block and base metals, and using a roller to align the height of the base metal. Full penetration and voids free welds were obtained with a plasma arc current 52A and weld speed 2.3m/min. An unmelted zone increased and Ericshen rate decreased as the height between Cu block and base metal increased from 0 to 0.6mm. Using a roller moving ahead of the plasma arc, the length of unmelted zone decreased from 1.7mm to 0.5mm.

Effect of Assist Gas on Laser Induced Plasma and Bead Formation in Welding of Structural Steel by CW Nd:YAG Laser (철강재료 용접에서 보조가스가 레이저플라즈마와 용입특성에 미치는 영향)

  • 김기철;신현준
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.109-115
    • /
    • 2002
  • In this study high power Nd:YAG laser welding of structural steel was investigated. For the test steel blocks of $50{\times}50{\times}200mm$ were cut and machined, and bead-on-plate weld was made on the machined surface. Argon, nitrogen, helium, dry air or mixed gases were used to find the effect of shielding conditions on the bead formation. Results demonstrated that there were Fe I rich region and Fe II rich region in the laser induced plasma column based on the spectral analysis with S-2000 field spectrometer The Fe I region was located at the root of the column near keyhole opening. On the other hand, Fe II region was found at the middle of the plasma column. In the Nd:YAG laser welding, Fe I region emitted continuum which had peak value at wave length of around 710nm, and Fe II region had the peak at 580nm. In the welding of steel by $CO_2$ laser, however, no continuum was observed. There showed two groups of strong spikes in the $CO_2$ laser welding; the first group was displayed at the wave band of 450-560nm. This spike group emitted stronger intensity of light and sharper peaks than those group at 680-800nm.

Evaluation of weldability of Al 6061 and 5052 alloy by using GMAW and Plasma-GMA welding (GMAW, Plasma-GMA Hybrid 용접을 이용한 Al 5052, 6061 합금의 용접성 평가)

  • Ahn, Young-Nam;Kim, Cheol-Hee;Choi, Jin-Kang
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.42-42
    • /
    • 2010
  • 알루미늄 합금은 질량 대비 강도가 우수하고 내식성 및 저온 특성이 양호하여 구조재로서 널리 사용되고 있다. 또한 그 사용 추세가 점점 증가 하고 있으며 알루미늄 합금의 용접을 위해 현재까지 다양한 용접 공정이 적용되었다. 일반적으로 GMAW, GTAW 등의 아크 용접과 박판의 경우 저항 점용접, 그 외의 $CO_2$ laser, Nd:YAG laser와 같은 고밀도 에너지 용접 공정에 의한 연구 결과들이 많이 발표 되었다. 하지만 알루미늄 합금의 특성 상 용접부에 기공과 균열과 같은 결함들이 각 공정에서 많이 발생하며 이러한 결함을 감소시키기 위한 용접기술에 관해 많은 연구가 진행되고 있다. 본 연구에서는 GMAW, Plasma-GMAW 공정을 적용하여 알루미늄 합금의 용접특성을 비교하였다. 알루미늄 합금 Al 5052, Al 6061 4mm 두께 모재에 대해 BOP(Bead On Plate) 용접실험을 실시하였으며 생산성 측면에서 각 공정에 따라 완전 용입 시 최대 용접 속도를 측정하여 비교하였다. 용접 품질 측면에서는 비드 표면 및 단면을 검사하고 인장시험을 수행하였으며, 용접 기공과 균열을 X-ray 촬영을 통해 비교하였다. 또한 고속카메라 촬영을 통해 용접 중 플라즈마로 인한 산화막 제거 효과를 확인하고 각 공정별 용접 시작부의 아크 안정성을 평가하였다. 인장시험 결과 모든 모드에서 모재에서 파단됨을 확인 하였고, Plasma-GMAW 공정의 경우 플라즈마의 예열효과로 인하여 GMAW 보다 완전용입 기준 용접속도가 빨랐으며, 청정작용도 우수한 것으로 확인되었다.

  • PDF