• 제목/요약/키워드: Plasma Technology

검색결과 3,820건 처리시간 0.032초

100KW DC Arc Plasma of CVD System for Low Cost Large Area Diamond Film Deposition

  • Lu, F.X.;Zhong, G.F.;Fu, Y.L.;Wang, J.J.;Tang, W.Z.;Li, G.H.;Lo, T.L.;Zhang, Y.G.;Zang, J.M.;Pan, C.H.;Tang, C.X.;Lu, Y.P.
    • The Korean Journal of Ceramics
    • /
    • 제2권4호
    • /
    • pp.216-220
    • /
    • 1996
  • In the present paper, a new type of DC arc plasma torch is disclosed. The principles of the new magnetic and fluid dynamic controlled large orifice long discharge tunnel plasma torch is discussed. Two series of DC Plasma Jet diamond film deposition equipment have been developed. The 20kW Jet equipped with a $\Phi$70 mm orifice torch is capable of deposition diamond films at a growth rate as high as 40$\mu\textrm{m}$/h over a substrate area of $\Phi$65 mm. The 100kW high power Jet which is newly developed based on the experience of the low power model is equipped with a $\Phi$120 mm orifice torch, and is capable of depositing diamond films over a substrate area of $\Phi$110 mm at growth rate as high as 40 $\mu\textrm{m}$/h, and can be operated at gas recycling mode, which allows 95% of the gases be recycled. It is demonstrated that the new type DC plasma torch can be easily scaled up to even higher power Jet. It is estimated that even by the 100kW Jet, the cost for tool grade diamond films can be as low as less than $4/carat.

  • PDF

Damage studies on irradiated tungsten by helium ions in a plasma focus device

  • Seyyedhabashy, Mir mohammadreza;Tafreshi, Mohammad Amirhamzeh;bidabadi, Babak Shirani;Shafiei, Sepideh;Nasiri, Ali
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.827-834
    • /
    • 2020
  • Damage of tungsten due to helium ions of a PF device was studied. The tungsten was analyzed by SEM and AFM after irradiation. SEM revealed fine bubbles of helium atoms with diameters of a few nanometers, which join and form larger bubbles and blisters on the surface of tungsten. This observation confirmed the results of molecular dynamics simulation. SEM analysis after etching of the irradiated surface indicated cavities with depth range of 35-85 nm. The average fluence of helium ion of the PF device was calculated about 5.2 × 1015 cm-2 per shot, using Lee code. Energy spectrum of helium ions was estimated using a Thomson parabola spectrometer as a function of dN/dE ∝ E-2.8 in the energy range of 10-200 keV. The characteristics of helium ion beam was imported to SRIM code. SRIM revealed that the maximum DPA and maximum helium concentration occur in the depth range of 20-50 nm. SRIM also showed that at depth of 30 nm, all of the tungsten atoms are displaced after 20 shots, while at depth of higher than 85 nm the destruction is insignificant. There is a close match between SRIM results and the measured depths of cavities in SEM images of tungsten after etching.

Measurement of Electron-neutral Collision Frequency Using Wave-cutoff Method

  • 유광호;나병근;김대웅;이윤성;박기정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.234-234
    • /
    • 2011
  • Electron-neutral collision frequency is one of the important parameters in the plasma physics and in industrial plasma engineering. We can understand the momentum, energy, and charge transport properties of the plasma using electron-neutral collision frequency.[1] The wave-cutoff method is a diagnostic method for the electron density measurement, but the cutoff peak value depends on gas pressure. The wave-cutoff signal becomes unclear as increasing gas pressure. The reason of pressure dependence is that the electron-neutral collision disturbs electron motion so that microwave can propagate through plasma at plasma frequency.[2] Using the pressure dependence of wave-cutoff method we can find the electron-neutral collision frequency. At first we tried to confirm this method using well known gas such as Ar. The cutoff signal decrease as increasing gas pressure (the simulation result). The wave-cutoff signal is unclear at a gas pressure of 500 mTorr. (electron density $1.0{\times}10^{10}/cm^3$, electron temperature 1.7 eV, electron -neutral collision frequency~1 GHz). In this condition, the electron-neutral collision frequency is closed to the wave-cutoff frequency.

  • PDF

Growth and Characterization of a-Si :H and a-SiC:H Thin Films Grown by RF-PECVD

  • Kim, Y.T.;Suh, S.J.;Yoon, D.H.;Park, M.G.;Choi, W.S.;Kim, M.C.;Boo, J.-H.;Hong, B.;Jang, G.E.;Oh, M.H.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.503-509
    • /
    • 2001
  • Thin films of hydrogenated amorphous silicon (a-Si : H) and hydrogenated amorphous silicon carbide (a-SiC:H) of different compositions were deposited on Si(100) wafer and glass by RF plasma-enhanced chemical vapor deposition (RF-PECVD). In the present work, we have investigated the effects of the RF power on the properties, such as optical band gap, transmittance and crystallinity. The Raman data show that the a-Si:H material consists of an amorphous and crystalline phase for the co-presence of two peaks centered at 480 and $520 cm^{-1}$ . The UV-VIS data suggested that the optical energy band gap ($E_{g}$ ) is not changed effectively with RF power and the obtained $E_{g}$(1.80eV) of the $\mu$c-Si:H thin film has almost the same value of a-Si:H thin film (1.75eV), indicating that the crystallity of hydrogenated amorphous silicon thin film can mainly not affected to their optical properties. However, the experimental results have shown that$ E_{g}$ of the a-SiC:H thin films changed little on the annealing temperature while $E_{g}$ increased with the RF power. The Raman spectrum of the a-SiC:H thin films annealed at high temperatures showed that graphitization of carbon clusters and microcrystalline silicon occurs.

  • PDF

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

플라즈마 표면처리 방법을 이용한 웨이퍼레벨 몰딩 공정용 기판의 최적 이형조건 도출 (Study on the Optimal Release Condition of Wafer Level Molding Process using Plasma Surface Treatment Method)

  • 연시모;박진호;이낙규;박석희;이혜진
    • 융복합기술연구소 논문집
    • /
    • 제5권1호
    • /
    • pp.13-17
    • /
    • 2015
  • In wafer level molding progress, the thermal releasing failure phenomenon is shown up as the important problem. This phenomenon can cause the problem including the warpage, crack of the molded wafer. The thermal releasing failure is due to the insufficiency of adhesion strength degradation of the molding tape. To solve this problem, we studied experimental method increasing the release property of the molding tape through the plasma surface treatment on the wafer substrate. In this research, the vacuum plasma treatment system is used for release property improvement of the molding tape and controls the operating condition of the hydrophilic($O_2$, 100kW, 10min) and hydrophobic($C_2F_6$, 200kW, 10min). In order to perform the peeling test for measuring the releasing force precisely, we remodel the micro scale material property evaluation system developed by Korea institute of industrial technology. In case of hydrophilic surface treatment on the wafer substrate, we can figure out the releasing property of molding tape increase. In order to grasp the effect that it reaches to the release property increase when repeating the hydrophilic treatment, we make an experiment with twice treatment and get the result to increase about 12%. We find out the hydrophilic surface treatment method using plasma can improve releasing property of molding tape in the wafer level molding process.

열변성 단백질이 결합된 음이온성 리포솜의 혈장 내 안정성 및 세포 내 이입 평가 (Stability in Plasma and Intracellular Uptake of Thermally Denatured Protein-coated anionic Liposomes)

  • 이미정;황인영;김성규;정석현;정서영;성하수;조선행;신병철
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권6호
    • /
    • pp.423-429
    • /
    • 2009
  • Liposomes have been used as one of the efficient carriers for drug delivery. In this study, anionic liposomes of which surface was modified by using both electrostaic interaction between anionic liposomes and cationically charged BSA molecules at lower pH than isoelectric point (pI) of BSA and denaturation of the BSA-coated liposomes by thermal treatment. The thermally denatured BSA-coated liposomes (DBAL) had mean particle diameter of 125.2${\pm}$1.7 nm and zeta potential value of -22.4${\pm}$4.5 mV. Loading efficiency of model drug, doxorubicin (DOX), into liposomes was 83.0${\pm}$2.6%. Results of in vitro stability study of DBAL in blood plasma showed that the mean particle diameter of DBAL 400 did not increase in blood plasma and adsorption of plasma protein was much less than plain or anionic liposomes. Intracellular uptake of DBAL 400 evaluated by confocal microscopy observation was higher than that of PEG liposomes.

Toward the Development of a New MHD Code for Fusion Plasma

  • Jang, Hanbyul;Ryu, Dongsu
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.38.2-38.2
    • /
    • 2015
  • Development of a new code for magnetohydrodynamic (MHD) phenomena in fusion plasma is under progress through a collaboration between plasma physicists, mathematicians, and astrophysicists. The code employs approaches different from those of existing codes. For instance, it is based on a finite difference scheme of high-order and high accuracy, complying conservation laws. The new code will have characteristics distinguished from those of commonly used code such as M3D and NIMROD. Here we will report the progress of the code development.

  • PDF

Transport Modelling on High Density Plasma Discharge with New Algorithm

  • Hwan, Choe-Hee;Yoon, N.S.;Park, Duk-In
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.194-194
    • /
    • 2000
  • There are difficulties on transport modelling on high density plasma discharge, because of severe restrictions on space grid size and time step size. We present a new unconditionally stable algorithm for fluid simulation of high density process plasma. The origin of the restriction is investigated and a new method to solve the problem is suggested, The simulation result is compared with the other methods previously developed.

  • PDF

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • 제26권5호
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.