• 제목/요약/키워드: Plasma Technology

검색결과 3,817건 처리시간 0.036초

플라즈마 도핑을 이용한 결정질 태양전지 에미터층 형성 연구 (A Study on Emitter layer by Plasma Doping for Crystalline Silicon Solar Cells)

  • 유동열;노시철;최정호;김정환;서화일;김영철
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.61-64
    • /
    • 2011
  • In order to grow the crystalline solar cells industry continuously, development of alternate low-cost manufacturing processes is required. Plasma doping system is the technique for introducing dopants into semiconductor wafers in CMOS devices. In photovoltaics, plasma doping system could be an interesting alternative to thermal furnace diffusion processes. In this paper, plasma doping system was applied for phosphorus doping in crystalline solar cells. The Plasma doping was carried out in 1~4 KV bias voltages for four minutes. For removing surface damage and formation of pn junction, annealing steps were carried out in the range of $800{\sim}900^{\circ}C$ with $O_2$ ambient using thermal furnace. The junction depth in about $0.35{\sim}0.6{\mu}m$ range have been achieved and the doping profiles were very similar to emitter by thermal diffusion. So, It could be confirmed that plasma doping technique can be used for emitter formation in crystalline solar cells.

플라즈마 환원 기술을 응용한 장수명의 은나노와이어/Reduced Graphene Oxide 하이브리드 투명전극 개발 (Development of AgNW/Reduced Graphene Oxide Hybrid Transparent Electrode with Long-Term Stability Using Plasma Reduction)

  • 정성훈;안원민;김도근
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.87-91
    • /
    • 2016
  • The development of high performance transparent electrode with flexibility have been required for flexible electronics. Here, we demonstrate the silver nanowire and reduced graphene oxide hybrid transparent electrode for replacing brittle indium-tin-oxide electrode by spray coating technique and plasma reduction. The spray coating system is applied to deposit silver nanowire and over coated graphene oxide films and it has a great potential to scale-up. The resistance of silver nanowire transparent electrode is reduced by 10% and the surface roughness is decreased after graphene oxide coating. The over-coated graphene oxide is successfully reduced by $H_2$ plasma treatment and it is effective in increasing the environmental stability of electrode. The lifetime of silver nanowire and reduced graphene oxide hybrid electrode at $85^{\circ}C$ of Celsius degree of temperature and 85% of relative humidity has much increased.

EB-PVD법으로 코팅된 Y2O3의 내플라즈마 특성 (Plasma Resistances of Yttria Deposited by EB-PVD Method)

  • 김대민;윤소영;김경범;김희식;오윤석;이성민
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.707-712
    • /
    • 2008
  • Plasma resistant nanocrystalline $Y_2O_3$ films were deposited on alumina substrates through the electron-beam PVD technique. Increasing substrate temperature to $600^{\circ}C$ resulted in the textured microstructures with significantly enhanced adhesion force of the coating to the substrate. During the exposure to fluorine plasma, erosion rate of the coated specimen was higher than that of a sintered yttria specimen, but significantly lower than that of a single crystalline alumina. Considering the adhesion and erosion behaviors observed in the coated specimen prepared at $600^{\circ}C$, the deposition technique appears effective in reducing contamination particles generated from the ceramic parts in the plasma environment.

A Study on the Characteristics of Plasma Blacks Prepared by Plasma Pyrolysis Over Metals Coated Honeycomb Catalysts

  • Park, Soo-Yeop;Lee, Joong-Kee;Yoo, Kyung-Seun;Cho, Won-Ihl;Baek, Young-Soon
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.74-78
    • /
    • 2003
  • Four kinds of plasma blacks were prepared by plasma pyrolysis under various metallic catalysts coated on honeycomb, and investigated the catalytic effect on the characteristics of the plasma blacks prepared under plasma pyrolysis condition. Pt, Pt-Rh, and Pd catalysts were employed as active materials to prepare the plasma blacks. In the experimental range studied, the metallic catalysts influenced on surface area, particle size, surface oxygen content and electrical conductivity of the plasma blacks prepared. It was showed that more dense particle of plasma blacks were prepared under existence of metallic catalysts. Presence of the metallic catalyst reduces the electrical resistivity of plasma blacks due to the decrease in the amount of oxygen functional groups. The highest electrical conductivity of plasma black was observed in the Pt catalyst and then followed by those Pt-Rh, Pd and bare cordierite honeycomb.

  • PDF

Determination of 5-HT2C agonist KKHQ80114 and KKHQ80109 in Rat Plasma and Urine by Gas-Chromatography/Mass Spectrometry

  • Im, Hye-Yeon;Park, Hye-Sil;Choo, Hyun-Ah;Pae, Ae-Nim;Kwon, Oh-Seung
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권5호
    • /
    • pp.321-325
    • /
    • 2009
  • 5-HT$_{2C}$ receptors have been considered as therapeutic targets for the treatment of various central nervous system disorders such as depression, anxiety, epilepsy, schizophrenia and sleep disorders. We chemically synthesized KKHQ80114 (K14) and KKHQ80109 (K09), selective 5-HT$_{2C}$ agonists, with the purpose of developing therapeutic agents for the treatment of obesity. The objective of this work is to investigate analytical methods of these compounds in the plasma and urine of rats by gas chromatography/mass spectrometry. In this experiment, K14 was determined in plasma and urine by using K09 as internal standard. Calibration curves give a good linearity in plasma (r$^2$=0.9993) and urine (r$^2$=0.9988). Among hexane, ethyl acetate and diethyl ether, the highest peak was observed in diethyl ether. However, ethyl acetate was used since more interfering peaks were observed with diethyl ether. Inter-day precision and accuracy were determined in the ranges of 50-500 ng/mL for plasma and 10-500 ng/ml for urine. Quantitation limits were 50 ng/mL plasma and 25 ng/ mL urine. These data may be applicable for further studies of these compounds including absorption and metabolism due to no pharmacokinetic or analytical data available.

Understanding of Non-Thermal Atmospheric Pressure Plasma Characteristics Produced in Parallel Plate Type Geometry

  • Choe, Wonho;Moon, Se Youn;Kim, Dan Bee;Jung, Heesoo;Rhee, Jun Kyu;Gweon, Bomi
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.144-144
    • /
    • 2013
  • Non-thermal atmospheric pressure plasmas have recently garnered much attention due to their unique physical and chemical properties that are sometimes significantly different from those of low pressure plasmas. It can offer many possible application areas including nano and bio/medical areas. Many different types of plasma sources have been developed for specific needs, which can be one of the important merits of the atmospheric pressure plasmas since characteristics of the produced plasma depend significantly on operating parameters such as driving frequency, supply gas type, driving voltage waveform, gas flow rate, gas composition, geometrical factor etc. Among many source configurations, parallel plate type geometry is one of the simplest configurations so that it can offer many insights for understanding basic underlying physics. Traditionally, the parallel plate type set up has been studied actively for understanding low pressure plasma physics along with extensive employment in industries for the same reason. By considering that understanding basic physics, in conjunction with plasma-surface interactions especially for nano & bio materials, should be pursued in parallel with applications, we investigated atmospheric pressure discharge characteristics in a parallel plate type capacitive discharge source with two parallel copper electrodes of 60 mm in diameter and several millimeters in gap distance. In this presentation, some plasma characteristics by varying many operating variables such as inter-electrode distance, gas pressure, gas composition, driving frequency etc will be discussed. The results may be utilized for plasma control for widening application flexibility.

  • PDF

On-line Trace Enrichment in High Performance Liquid Chromatography Using XAD-2 Precolumn for the Determination of Lonazolac in Human Plasma

  • Lee, Hye-Suk;Kim, Eun-Joo;Zee, Ok-Pyo;Lee, Yoon-Joong
    • Archives of Pharmacal Research
    • /
    • 제12권2호
    • /
    • pp.108-113
    • /
    • 1989
  • A new column-switching high performance liquid chromatographic method was developed for the determination of lonazolac in plasma. This method was based on the on-line trace enrichment of lonazolac using a precolumn packed with Amberlite XAD-2. The analysis was complete in 20 min. between injections and the limit of detection was $0.1{\mu}g/ml$ using $100{\mu}l$ of plasma. The method was linear in range of $0.1-10{\mu}g/ml$ with a correlation coefficient of 0.9991. Absolute recovery of lonazolac from the spiked plasma samples ranged from 95.6% to 97.1%. The method was shown to be reproducible over the concentration range studied.

  • PDF

Carbon Nanotube Synthesis using Magnetic Null Discharge Plasma Production Technology

  • Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.532-536
    • /
    • 2007
  • Carbon nanotube (CNT) properties, produced using a magnetic null discharge (MND) plasma production technology, were investigated. We firstly deposited the Fe layer 200 nm in thickness on Si substrate by the magnetic null discharge sputter method at the substrate temperature of $300도C$, and then prepared CNTs on the catalyst layer by using the magnetic null discharge (MND) based CVD method. CNTs were deposited in a gas mixture of CH4 and N2 at a total pressure of 1 Torr by the MND-CVD method. The substrate temperature and the RF power were $650^{\circ}C$ and 600W, respectively. The characterization data indicated that the proposed source could synthesize CNTs even under relatively severe conditions for the magnetic null discharge formation.

Finding interstitial oxygen in an Si substrate during low temperature plasma oxidation

  • Kim, Bo-Hyun;Ahn, Jin-Hyung;Ahn, Byung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.690-693
    • /
    • 2003
  • An Si substrate (100) was oxidized at $400^{\circ}C$ in inductively coupled oxygen plasma. Interstitial oxygen was found in the Si substrate at the initial stage of oxidation by IR measurements. An x-ray rocking curve of Si substrates showed a lower peak intensity due to lattice distortion by the interstitial oxygen. The refractive index of thin oxides, below which interstitial oxygen existed in the Si substrate, was smaller than the refractive index of thick oxides, below which no interstitial oxygen existed. The interstitial oxygen was found by plasma oxidation using $O_{2}$ gas and $N_{2}O$ gas. The inductively coupled plasma oxidation using $N_{2}O$ gas was performed by atomic oxygen, not by molecular oxygen, indicating that atomic oxygen in plasma is responsible for the incorporation of interstitial oxygen.

  • PDF

카본 나노재료 합성을 위한 표면파 플라즈마 CVD 기술 (Surface wave excited plasma CVD technologies for the synthesis of carbon nanomaterials)

  • 김재호
    • 진공이야기
    • /
    • 제2권4호
    • /
    • pp.16-26
    • /
    • 2015
  • Carbon nanomaterials including nanocrystalline diamond and graphene films are expected to play a core role in $21^{st}$ century industries due to their amazing physicochemical properties. To achieve their practical utilization and industrialization, the development of their mass production technologies is strongly required. Recently, a surface wave excited plasma (SWP) which is produced using microwaves has been attracting special attentions as a candidate for the mass production technology of carbon nanomaterials. SWP can allow a low-temperature large-area plasma chemical vapor deposition (CVD) system. Here, this article introduces the promising SWP-CVD technology. Plasma characteristics in a SWP will be introduced in detail to help understanding how to use and control a SWP as a plasma source for CVD applications.