• 제목/요약/키워드: Plasma Properties

검색결과 2,463건 처리시간 0.038초

산소 플라즈마 처리에 따른 유기 발광 다이오드의 전기적 특성 (Electrical Properties of Organic light-emitting Diode with Oxygen Plasma Treatment)

  • 김승태;홍진웅
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1566-1570
    • /
    • 2013
  • In this paper, we analyzed the electric characteristics of the OLEDs device of which anode ITO has been treated with the oxygen plasma. We fabricated the basic three-layer structure (ITO / AF / $Alq_3$ / $Cs_2CO_3$ / Al) device, analyzed how the oxygen plasma treatments of the ITO surface affects to the electrical characteristics of OLEDs. We also produced a four-layer structure device (ITO / AF / TPD / $Alq_3$ / $Cs_2CO_3$ / Al) with the oxygen plasma treatment. From the comparative analysis to the devices, we confirmed following results. The three-layer structure OLEDs device with oxygen plasma treatment has better characteristics than the device without the treatments; maximum luminance, luminous efficiency, and external quantum efficiency are improved approximately 151 [%], 126 [%], and 175[%], respectively. Also, the electric characteristics of the four-layer structure device with oxygen plasma treatment are improved comparing to the characteristics of the three-layer structure device with oxygen plasma treatment; maximum luminance, luminous efficiency, and external quantum efficiency are improved approximately 144 [%], 115 [%], and 124[%], respectively.

Characterization of inductively coupled Ar/CH4 plasma using tuned single langmuir probe and fluid simulation

  • 차주홍;한문기;김동현;이해준;이호준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.143.1-143.1
    • /
    • 2015
  • An inductively coupled plasma source driven by 13.56MHz was prepared for the deposition of a-C:H thin film. Properties of the plasma source are investigated by fluid simulation including Navier-Stokes equations and home-made tuned single Langmuir probe. Signal attenuation ratios of the Langmuir probe at first and second harmonic frequency were 13.56Mhz and 27.12Mhz respectively. Dependencies of plasma parameters on process parameters were agreed with simulation results. Ar/CH4 plasma simulation results shown that hydrocarbon radical densities have their lowest value at the vicinity of gas feeding line due to high flow velocity. For input power density of 0.07W/cm3, CH radical density qualitatively follows electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density. The result suggest that optimization of discharge power is important for controlling deposition film quality in high density plasma sources.

  • PDF

Analysis of H-ICP Source by Noninvasive Plasma Diagnostics of Etching Process

  • Park, Kun-Joo;Kim, Min-Shik;Lee, Kwang-Min;Chae, Hee-Yeop;Lee, Hi-Deok
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.126-126
    • /
    • 2009
  • Noninvasive plasma diagnostic technique is introduced to analyze and characterize HICP (Helmholtz Inductively Coupled Plasma) source during the plasma etching process. The HICP reactor generates plasma mainly through RF source power at 13.56MHz RF power and RF bias power of 12.56MHz is applied to the cathode to independently control ion density and ion energy. For noninvasive sensors, the RF sensor and the OES (Optical emission spectroscopy) were employed since it is possible to obtain both physical and chemical properties of the reactor with plasma etching. The plasma impedance and optical spectra were observed while altering process parameters such as pressure, gas flow, source and bias power during the poly silicon etching process. In this experiment, we have found that data measured from these noninvasive sensors can be correlated to etch results. In this paper, we discuss the relationship between process parameters and the measurement data from RF sensor and OES such as plasma impedance and optical spectra and using these relationships to analyze and characterize H-ICP source.

  • PDF

플렉서블 디스플레이 적용을 위한 저온 실리콘 질화막의 N2 플라즈마 처리 영향 (Influence of Nitrogen Plasma Treatment on Low Temperature Deposited Silicon Nitride Thin Film for Flexible Display)

  • 김성종;김문근;권광호;김종관
    • 한국전기전자재료학회논문지
    • /
    • 제27권1호
    • /
    • pp.39-44
    • /
    • 2014
  • Silicon nitride thin film deposited with Plasma Enhanced Chemical Vapor Deposition was treated by a nitrogen plasma generated by Inductively Coupled Plasma at room temperature. The treatment was investigated by Fourier Transform Infrared Spectroscopy and Atomic Force Microscopy on the surface at various RF source powers at two RF bias powers. The amount of hydrogen was reduced and the surface roughness of the films was decreased remarkably after the plasma treatment. In order to understand the causes, we analyzed the plasma diagnostics by Optical Emission Spectroscopy and Double Langmuir Probe. Based on these analysis results, we show that the nitrogen plasma treatment was effective in the improving of the properties silicon nitride thin film for flexible display.

Ion Flux Assisted PECVD of SiON Films Using Plasma Parameters and Their Characterization of High Rate Deposition and Barrier Properties

  • Lee, Joon-S.;Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.236-236
    • /
    • 2011
  • Silicon oxynitride (SiON) was deposited for gas barrier film on polyethylene terephthalate (PET) using octamethylycyclodisiloxane (Si4O4C8H24, OMCTS) precursor by plasma enhanced chemical vapor deposition (PECVD) at low temperature. The ion flux and substrate temperature were measured by oscilloscope and thermometer. The chemical bonding structure and barrier property of films were characterized by Fourier transform infrared (FT-IR) spectroscopy and the water vapor transmission rate (WVTR), respectively. The deposition rate of films increases with RF bias and nitrogen dilution due to increase of dissociated precursor and nitrogen ion incident to the substrate. In addition, we confirmed that the increase of nitrogen dilution and RF bias reduced WVTR of films. Because, on the basis of FT-IR analysis, the increase of the nitrogen gas flow rate and RF bias caused the increase of the C=N stretching vibration resulting in the decrease of macro and nano defects.

  • PDF

Zircaloy-4의 플라즈마 아크용접에서 용접변수가 비이드형상에 미치는 영향 (A Study on Effects of Parameters on Beads by Plasma Arc Welding for Zircaloy-4)

  • 고진현;김수성;이영호
    • Journal of Welding and Joining
    • /
    • 제15권6호
    • /
    • pp.57-65
    • /
    • 1997
  • A study was undertaken to determine the influence of welding variables such as shielding and plasma gases, torch standoff, travel speed and heat input, etc. on the quality of plasma arc welds in Zircaloy-4 sheet, 2mm thick. Effect of shielding gases and their flow rates on the mechanical properties of Zircaloy-4 welds by plasma arc welding were determined in terms of tensile, bardness and bend tests. The microstructure and fracture surface of Zircaloy-4 welds were investigated by optical and scanning electron microscopies. In addition, the causes of porosity and undercut in plasma arc welds of Zircaloy-4 were also investigated. Zircaloy-4 weld bead width and depth by helium shielding gas showed a wider and deeper than those by argon. It was found that Zircaloy-4 welds with shielding gas of helium did dxhibit a little smoother and uniform weld beads than those with shielding gas of argon. It was also found that the optimum gas flow rates for Zircaloy-4 welding were 0.45l/min for plasma gas with Ar and 4.5 - 6 l/min for shielding gas with He. In addition, there was no big difference in the microstructure and fracture surface of the weld metals made by either Ar shielding gas or He shielding gas.

  • PDF

Gas Pemeation of pure $CO_{2}$ and $N_{2}$ through plasma-Treated Polypropylene Membranes

  • Lee, Woo-Sup;Rew, Dae-Sun;Bae, Seong-Youl;Kumazawa, Hidehiro
    • Korean Membrane Journal
    • /
    • 제1권1호
    • /
    • pp.65-72
    • /
    • 1999
  • The surface of polypropylene membrane was modified by plasma treatment using Ar,$N_{2}$, $NH_{2}$ and $O_{2}$ Permeabilities for $CO_{2}$, $N_{2}$ and separation factor for $CO_{2}$ relative to $N_{2}$ were measured. The permeation experiments were performed by a variable volume method at $25^{\circ}C$ and 0.303MPa. The effects of the plasma conditions such as treatement time power input gas flow rate and pressure in the reactor on the transport properties of modified membrane were investigated. The surface of the plasma treated membrane was analyzed by means of FTIR-ATR XPS and AFM. The surface structure of the plasma treated membrane was fairly different from that of the untreated membrane. Although the permeation rates for both $CO_{2}$ and $N_{2}$ decreased with increasing plasma treatement time the separation factor was found to be improved by the plasma treatement. The operating conditions of plasma treatement imposed on membranes had notable effect on the permeability and separation factor.

  • PDF

High-Density Hollow Cathode Plasma Etching for Field Emission Display Applications

  • Lee, Joon-Hoi;Lee, Wook-Jae;Choi, Man-Sub;Yi, Joon-Sin
    • Journal of Information Display
    • /
    • 제2권4호
    • /
    • pp.1-7
    • /
    • 2001
  • This paper investigates the characteristics of a newly developed high density hollow cathode plasma(HCP) system and its application for the etching of silicon wafers. We used $SF_6$ and $O_2$ gases in the HCP dry etch process. This paper demonstrates very high plasma density of $2{\times}10^{12}cm^{-3}$ at a discharge current of 20 rna, Silicon etch rate of 1.3 ${\mu}m$/min was achieved with $SF_6/O_2$ plasma conditions of total gas pressure of 50 mTorr, gas flow rate of 40 seem, and RF power of200W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. We obtained field emitter tips size of less than 0.1 ${\mu}m$ without any photomask step as well as with a conventional photolithography. Our experimental results can be applied to various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications. In this research, we studied silicon etching properties by using the hollow cathode plasma system.

  • PDF

플라즈마 고분자에 대한 기체의 투과특성에 관한 연구 (A Study on the Gas Permeation Characteristics of Plasma Polymers)

  • 오세중
    • 멤브레인
    • /
    • 제4권4호
    • /
    • pp.205-212
    • /
    • 1994
  • 플라스마 고분자막을 통한 일반기체들(He, $H_2,\;CO_2,\;O_2,\;N_2,\;CH_4$등)의 투과특성을 조사하였으며 IR 분석을 통하여 플라즈마 고분자의 화학적 구조를 살펴 보았다. 플라즈마 고분자막은 불소를 함유한 방향족 화합물의 플라즈마 중합에 의하여 제조하였으며 이 막을 통한 기체투과실험은 $35^{\circ}C$, 1기압에서 행하였다. 이 막들의 투과계수는 투과기체의 분자 크기가 커질수록 감소하는 경향을 나타내었다. 플라즈마 고분자의 $O_2/N_2$ 선택투과도는 상용고분자보다 약간 낮았으나 $CO_2/CH_4$ 선택투과도는 상용고분자보다 매우 높은 것으로 나타났다. FT-IR 분석을 통하여 플라즈마 고분자는 방향족과 지방족 구조를 모두 포함한 구조를 이루고 있다는 것을 알 수 있었다.

  • PDF

Analysis of BNNT(Boron Nitride Nano Tube) synthesis by using Ar/N2/H2 60KW RF ICP plasma in the difference of working pressure and H2 flow rate

  • Cho, I Hyun;Yoo, Hee Il;Kim, Ho Seok;Moon, Se Youn;Cho, Hyun Jin;Kim, Myung Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.179-179
    • /
    • 2016
  • A radio-frequency (RF) Inductively Coupled Plasma (ICP) torch system was used for boron-nitride nano-tube (BNNT) synthesis. Because of electrodeless plasma generation, no electrode pollution and effective heating transfer during nano-material synthesis can be realized. For stable plasma generation, argon and nitrogen gases were injected with 60 kW grid power in the difference pressure from 200 Torr to 630 Torr. Varying hydrogen gas flow rate from 0 to 20 slpm, the electrical and optical plasma properties were investigated. Through the spectroscopic analysis of atomic argon line, hydrogen line and nitrogen molecular band, we investigated the plasma electron excitation temperature, gas temperature and electron density. Based on the plasma characterization, we performed the synthesis of BNNT by inserting 0.5~1 um hexagonal-boron nitride (h-BN) powder into the plasma. We analysis the structure characterization of BNNT by SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy), also grasp the ingredient of BNNT by EELS (Electron Energy Loss Spectroscopy) and Raman spectroscopy. We treated bundles of BNNT with the atmospheric pressure plasma, so that we grow the surface morphology in the water attachment of BNNT. We reduce the advancing contact angle to purity bundles of BNNT.

  • PDF