• Title/Summary/Keyword: Plasma Properties

Search Result 2,436, Processing Time 0.033 seconds

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

Effect of non-thermal atmospheric pressure nitrogen and air plasma on the surface properties and the disinfection of denture base resin (상온대기압 질소 및 공기 플라즈마가 의치상용 레진의 표면 특성과 살균효과에 미치는 영향)

  • Seo, Hye-Yeon;Yoo, Eun-Mi;Choi, Yu-Ri;Kim, Soo-Hwa;Kim, Kwang-Mahn;Kim, Kyoung-Nam
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.5
    • /
    • pp.783-788
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate the effect of non-thermal atmospheric pressure plasma jet(NTAPPJ) on surface properties and Streptococcus mutans disinfection of denture base resin. Methods : Self-cured denture base resin (Jet denture repair resin, Lang dental Mfg, co., USA) was used to make specimen($12mm{\times}2mm$). To observe surface change before and after plasma process, surface roughness and contact angle were measured. For sterilization experiments, the surfaces of specimens were treated with nitrogen and air NTAPPJ for 1 minute after S. mutans was inoculated on the material surfaces. Results : Before plasma process, surface roughness of denture base resin was $0.21{\mu}m{\pm}0.02{\mu}m$. After air and nitrogen NTAPPJ process, surface roughness was $0.19{\mu}m{\pm}0.03{\mu}m$ and $0.18{\mu}m{\pm}0.01{\mu}m$ respectively. There was no significant difference(p>0.05). Contact angle of control group without plasma process was $83.81^{\circ}{\pm}3.14^{\circ}$, while after plasma treatment, contact angles of air NTAPPJ and nitrogen NTAPPJ groups were $63.29^{\circ}{\pm}2.27^{\circ}$ and $46.68^{\circ}{\pm}5.82^{\circ}$ respectively. The result showed a significant decrease in contact angle after plasma process(p<0.05). Compared to the control group 6020.33(CFU/mL) without plasma process, CFU decreased significantly after air NTAPPJ 90.75(CFU/mL) and nitrogen NTAPPJ 80.25(CFU/mL) treatment(p<0.05). Conclusions : It was considered that NTAPPJ can be used for denture disinfection without changing surface properties of materials.

Preparation of Polymer Thin Films of Pentafluorostyrene via Plasma Polymerization

  • Ahn, C.J.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Polymer thin films of pentafluorostyrene (PFS) were prepared by RF plasma (13.56 MHz) polymerization in continuous wave (CW) mode, as a function of plasma power and monomer pressure. Conditions for film preparation were optimized by measuring the solvent resistance of plasma polymer thin films in DMAc, NMP, THF, acetone and chloroform, as well as by evaluating the optical clarity via UV-VIS measurements. Pulsed mode plasma polymerization was also utilized to enhance the optical properties of the films by varying the period of on-time and duty cycle. Finally, the films were subjected to refractive index measurements and analyzed by ${\alpha}$-step, TGA and FT-IR.

  • PDF

Etching Properties of $RuO_2$Thin Film in Inductively Coupled Plasma (ICP에 의한 $RuO_2$박막의 식각 특성)

  • 김창일;김동표
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.863-865
    • /
    • 2001
  • In this study, RuO$_2$thin films were etched in inductively coupled $O_2$plasma. Etching characteristics of RuO$_2$thin films including etch rate and selectivity were evaluated as a function of rf power in $O_2$plasma and gas mixing ratio in $O_2$/Ar plasma. In $O_2$ plasma, the etch rate of RuO$_2$thin film increases as rf power increases. In $O_2$/Ar plasma, the etch rate of RuO$_2$thin film increases up to 10% Ar, but decrease with furthermore increasing Ar mixing ratio. The enhanced etch rate can be obtained with increasing rf power and small addition of Ar gas.

  • PDF

Improvement of Interface Adhesionin Ball Grid Array Packages by Plasma Treatment (플라즈마 처리에 의한 BGA 패키지의 계면 접착력 향상)

  • 김경섭;한완옥;장의구
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.64-69
    • /
    • 2000
  • Reliability of PBGA(Plastic Ball Grid Array) package is very weak compared with normal plastic packages. The reliability are the lower resistance to popcorn cracking, which is reduced by moisture absorption in PCB(Printed Circuit Board). This paper adapts plasma treatment process and analyzes their effect. The contents of C and Cl decrease after plasma treatment but O, Ca and N relatively increase. The Plasma treatment to improve the adhesion between EMC(Epoxy Molding Compound) and PCB(solder mask). The degree of improvement was over 100% Max., which is depend on the properties of EMC. Ar+H$_2$as plasma gas show good result. There is a little difference in RF power and treatment time.

  • PDF

Effects of Low Temperature Plasma Nitriding Treatment on Corrosion behavior of Stainless Steel (스테인리스강의 내식성에 미치는 저온 플라즈마 질화의 영향)

  • Kim, H.G.;Bin, J.U.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.3-9
    • /
    • 2011
  • Plasma nitriding of stainless steels has been investigated over a range of temperature from 400 to $500^{\circ}C$ and time from 10 to 20 hours. Characterization of systematic materials was carried out in terms of mechanical properties and corrosion behaviors. The results showed that plasma nitriding conducted at low temperatures not only increased the surface hardness, but also improved the corrosion resistance of STS 316L, STS409L, and STS 420J2. It was found that plasma-nitriding treatment at $500^{\circ}C$ resulted in increasing the corrosion performance of STS 409L and STS 420J2, while STS 316L was observed with server and massive damage on surface due to the formation of CrN.

Effect of Ar Gas Plasma Treatment of Plastic Ball Grid Array Package (플라스틱 BGA 패키지의 아르곤 가스 플라즈마 처리 효과)

  • 신영의;김경섭
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.805-811
    • /
    • 2000
  • Reliability of PBGA(plastic ball grid array) package is weak compared with normal plastic packages. The low reliability is caused by low resistance to the popcorn cracking, which is generated by moisture absorption in PCB(prited circuit board). In this paper, plasma treatment process was used and we analyzed its effects to interface adhesion. The contents of C and Cl decrease after plasma treatment but those of O, Ca, N relatively increase. The plasma treatment improves the adhesion between EMC(epoxy molding compound) and PCB(solder mask). The grade of improvement was over 100% Max, which depends on the properties of EMC. The RMS(root mean square) roughness value of the solder mask surface increases to plasma treatment. There is little difference of adhesion in RF power and treatment time.

  • PDF

Investigate Electronic Property of N-doped Plasma-Polymer Thin Films for Applied Biosensors

  • Seo, Hyeon-Jin;Hwang, Gi-Hwan;Nam, Sang-Hun;Ju, Dong-U;Lee, Jin-Su;Yu, Jeong-Hun;Bu, Jin-Hyo;Yun, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.159-159
    • /
    • 2013
  • In this studying, we investigated the basic properties of N-doped plasma polymer. The N-doped plasma polymer thin films were deposited by radio frequency (13.56 MHz) plasma-enhanced chemical vapor deposition method. Various carbon-source were used as organic precursor with hydrogen gas as the precursor bubbler gas. Additionally, ammonia gas [NH3] was used as nitrogen dopant. The as-grown polymerized thin films were analyzed using cyclic voltammetry, ellipsometry, Fourier-transform infrared [FT-IR] spectroscopy, Raman spectroscopy, FE-SEM, and water contact angle measurement. Electronic property of N-doped plasma thin film is changed as flow rate of the NH3 gas.

  • PDF

Formation of Plasma Damage-Free ITO Thin Flims on the InGaN/GaN based LEDs by Using Advanced Sputtering

  • Park, Min Joo;Son, Kwang Jeong;Kwak, Joon Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.312-312
    • /
    • 2013
  • GaN based light emitting diodes (LEDs) are important devices that are being used extensively in our daily life. For example, these devices are used in traffic light lamps, outdoor full-color displays and backlight of liquid crystal display panels. To realize high-brightness GaN based LEDs for solid-state lighting applications, the development of p-type ohmic electrodes that have low contact resistivity, high optical transmittance and high refractive index is essential. To this effect, indiumtin oxide (ITO) have been investigated for LEDs. Among the transparent electrodes for LEDs, ITO has been one of the promising electrodes on p-GaN layers owing to its excellent properties in optical, electrical conductivity, substrate adhesion, hardness, and chemical inertness. Sputtering and e-beam evaporation techniques are the most commonly used deposition methods. Commonly, ITO films on p-GaN by sputtering have better transmittance and resistivity than ITO films on p-GaN by e-bam evaporation. However, ITO films on p-GaN by sputtering have higher specific contact resistance, it has been demonstrated that this is due to possible plasma damage on the p-GaN in the sputtering process. In this paper, we have investigated the advanced sputtering using plasma damage-free p-electrode. Prepared the ITO films on the GaN based LEDs by e-beam evaporation, normal sputtering and advanced sputtering. The ITO films on GaN based LEDs by sputtering showed better transmittance and sheets resistance than ITO films on the GaN based LEDs by e-beam evaporation. Finally, fabricated of GaN based LEDs by using advanced sputtering. And compared the electrical properties (measurement by using C-TLM) and structural properties (HR-TEM and FE-SEM) of ITO films on GaN based LEDs produced by e-beam evaporation, normal sputtering and advanced sputtering. As a result, It is expected to form plasma damage free-electrode, and better light output power and break down voltage than LEDs by e-beam evaporation and normal sputter.

  • PDF

Synthesis of Boron Nitride Nanotubes via inductively Coupled thermal Plasma process Catalyzed by Solid-state ammonium Chloride

  • Chang, Mi Se;Nam, Young Gyun;Yang, Sangsun;Kim, Kyung Tae;Yu, Ji Hun;Kim, Yong-Jin;Jeong, Jae Won
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.120-125
    • /
    • 2018
  • Boron nitride nanotubes (BNNTs) are receiving great attention because of their unusual material properties, such as high thermal conductivity, mechanical strength, and electrical resistance. However, high-throughput and high-efficiency synthesis of BNNTs has been hindered due to the high boiling point of boron (${\sim}4000^{\circ}C$) and weak interaction between boron and nitrogen. Although, hydrogen-catalyzed plasma synthesis has shown potential for scalable synthesis of BNNTs, the direct use of $H_2$ gas as a precursor material is not strongly recommended, as it is extremely flammable. In the present study, BNNTs have been synthesized using radio-frequency inductively coupled thermal plasma (RF-ITP) catalyzed by solid-state ammonium chloride ($NH_4Cl$), a safe catalyst materials for BNNT synthesis. Similar to BNNTs synthesized from h-BN (hexagonal boron nitride) + $H_2$, successful fabrication of BNNTs synthesized from $h-BN+NH_4Cl$ is confirmed by their sheet-like properties, FE-SEM images, and XRD analysis. In addition, improved dispersion properties in aqueous solution are found in BNNTs synthesized from $h-BN+NH_4Cl$.