• Title/Summary/Keyword: Plasma Properties

Search Result 2,427, Processing Time 0.029 seconds

STUDIES ON THE HIGH TEMPERATURE PROPERTIES OF DUPLEX-TREATED AISI H13 STEEL

  • Chung, J.W.;Lee, S.Y.;Kim, C.W.;Kim, S.S.;Han, J.G.;Lee, S.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.634-639
    • /
    • 1996
  • In oder to improve the wear resistance as well as oxidation resistance at high temperature a AISI H13 steel was treated by a duplex process of calorizing followed by plasma nitriding. The surface properties of the duplex-treated AISI H13 steel was characterized and compared with those treated by single surface process of calorizing and plasma nitriding, in terms of microstruture, microhardness, wear resistance at $500^{\circ}C$, and the oxidation behaviours at $700^{\circ}C$, Duplex process on H13 steel had created duplex layer of approximately $190\mu\textrm{m}$ on the surface, and surface microhardness was measured to be above 1450Hv(0.1Kgf). There was considerable improvement of the high temperature wear resistance at $500^{\circ}C$ in the duplex-treated steel when both wear volume and weight change due to oxidation were considered. In addition the duplex-treated steel showed an improved high temperature oxidation resistance than the plasma nitrided steel at $700^{\circ}C$.

  • PDF

Microstructures and Properties of Surface Hardened Layer on the Plasma Sulfnitrided SKD61 Steel (플라즈마 침류질화처리된 SKD61강의 표면경화층의 미세조직과 특성)

  • Lee, In-Sup;Park, Chul;Park, Ik-Min
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.568-572
    • /
    • 2002
  • Plasma sulfnitriding technology was employed to harden the surface of SKD61 steel. The plasma sulfnitriding was performed with 3 torr gas pressure at $580^{\circ}C$ for 20 hours. Plasma sulfnitriding resulted in the formation of very thin $2-3\mu\textrm{m}$ FeS sulfide layer on top of $15-20\mu\textrm{m}$ compound layer, which consisted of predominantly $\varepsilon$- $Fe{2-3}$ N and a second phase of $\Upsilon'-Fe_4$N. In comparision with plasma nitriding treatment, plasma sulfnitriding treatment showed better surface roughness and corrosion resistance due to the presence of the thin FeS layer. which coated microvoids and microcracks on top of the nitrided layer. It was also found that plasma sulfnitrided sample showed better wear resistance due to the presence of the thin FeS layer which acted as a solid lubricant.

Efficiency enhancement of the organic light-emitting diodes by oxygen plasma treatment of the ITO substrate

  • Hong, J.W.;Oh, D.H.;Kim, C.H.;Kim, G.Y.;Kim, T.W.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.193-197
    • /
    • 2012
  • Oxygen plasma has been treated on the surface of indium-tin-oxide (ITO) to improve the efficiency of the organic light-emitting diodes (OLEDs) device. The plasma treatment was expected to inject the holes effectively due to the control of an ITO work-function and the reduction of surface roughness. To optimize the treatment condition, a surface resistance and morphology of the ITO surface were investigated. The effect on the electrical properties of the OLEDs was evaluated as a function of oxygen plasma powers (0, 200, 250, 300, and 450 W). The electrical properties of the devices were measured in a device structure of ITO/TPD/Alq3/BCP/LiF/Al. It was found the plasma treatment of the ITO surface affects on the efficiency of the device. The efficiency of the device was optimized at the plasma power of 250 W and decreased at higher power than 250 W. The maximum values of luminance, luminous power efficiency, and external quantum efficiency of the plasma treated devices increase by 1.4 times, 1.4 times, and 1.2 times, respectively, compared to those of the non-treated ones.

A study on the generating plasma by microwave (마이크로파를 이용한 플라즈마 발생에 관한 연구)

  • Whang, Ki-Woong;Lee, Jeong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.300-303
    • /
    • 1987
  • A microwave plasma generating system has been designed to study the properties of plasma. A microwave(2.45GHz) generated by the magnetron is transmitted to the cylindrical cavity through the the rectangular wave guide to generate hydrogen plasma. The electron temperature and the plasma density are measured by the Double Langmuir probe. A dilectric such as alumina is heated by the microwave add plasma. The surface temperature varies with the neutral gas pressure.

  • PDF

Evaluation of Mechanical Properties of Barrier Ribs for Plasma Display Panel Using Nano Indenter Technology (나노 인덴터를 이용한 플라즈마 디스플레이 소자(PDP)내 격벽의 기계적 물성 평가)

  • Jung, Byung-Hae;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • For the rib materials in PDP(plasma display panel), an effective method to improve the mechanical properties is to form a composite material by reinforcing a glass matrix with rigid fillers, such as alumina and titania powders. In this study, two types of ribs with different volume percent of fillers and with different glass matrix were tested for hardness, Young's modulus with the Berkovich indentation. As a result, cracks appeared around at the load of 1345 mN for the dense type of rib, while porous one endured until 2427 mN without any crack formation. Young's modulus and hardness decreased at the range: 90∼65 GPa, 9∼4 GPa, respectively as a function of indent load. Thus, a new method with nanoindenter represents a possible evaluation method for mechanical properties of barrier ribs.

Surface Properties of Plasma Nitrogen Ion Implanted Stainless Steel (플라즈마 질소 이온주입한 오스테나이트 스테인레스 강의 표면특성)

  • Kim, G.H.;Nikiforov, S.A.;Lee, H.S.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2253-2255
    • /
    • 1999
  • Plasma source ion implantation (PSII) is a non-line-of-sight technique for surface modification of materials which is effective for non-planar targets. Properties such as hardness, corrosion resistance, wear resistance and friction can be improved without affecting the bulk properties of the material. Type 304 austenitic stainless steel was treated by nitrogen plasma ion implantation at a target bias of -50kV. Surface properties, including microhardness and ion depth profile, were studied.

  • PDF

A Study on the Adhesive Improvement of Glass cloth/Epoxy Composite Insulating Materials(2) - For Improvement of Wettability on the Interface - (유리섬유/에폭시 복합절연재료의 계면 접착력 개선에 관한 연구(2) - 절연특성 향상에 관하여 -)

  • Kim, Soon-Tae;Hwang, Yeong-Han;Park, Hong-Tae;Eom, Moo-Soo;Lee, Kyu-Chul;Lee, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1061-1065
    • /
    • 1995
  • To improve dielectric and mechanical properties of insulating composite by plasma surface treatment, new plasma surface treatment process is designed with concentric and hemi-circle electrodes system, the plasma, which is generated between anode and cathode, is induced to the upper side of the electrode system and treats the surface of the insulators. The optimal surface treatment condition is that pressure : 0.5[torr], flux density 100[gauss], discharge current : 500[mA] and treatment time : 3 minutes. The composite filled with glass cloth surface-treated by plasma shows the improvement in electric and mechanical properties, comparing non- and coupling agent-treated samples.

  • PDF

Preparation and Characterization of Plasma Polymerized Methyl Methacrylate Thin Films as Gate Dielectric for Organic Thin Film Transistor

  • Ao, Wei;Lim, Jae-Sung;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.836-841
    • /
    • 2011
  • Plasma polymerized methyl methacrylate (ppMMA) thin films were deposited by plasma polymerization technique with different plasma powers and subsequently thermally treated at temperatures of 60 to $150^{\circ}C$. To find a better ppMMA preparation technique for application to organic thin film transistor (OTFT) as dielectric layer, the chemical composition, surface morphology, and electrical properties of ppMMA were investigated. The effect of ppMMA thin-film preparation conditions on the resulting thin film properties were discussed, specifically O-H site content in the pMMA, dielectric constant, leakage current density, and hysteresis.

Effect of Process Parameters on Plasma Nitriding Properties of $FeAl/SiC_p$ Composites ($FeAl/SiC_p$ 복합재료의 공정변수에 따른 플라즈마 질화 특성)

  • 박지환;김수방;박윤우
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.286-293
    • /
    • 1999
  • This study was to analyse the relationship between process parameters of the sintered composite and plasma nitriding properties with pulsed DC plasma. Fe-40at%$SiC_p$ composites of full density were fabricated by hot pressing at 1100~$1150^{\circ}C$. Sintered Fe-40at%Al and Fe-40at%$Al/SiC_p$ alloys were nitrided under pulsed DC plasma. Excellent surface hardness in the FeAl alloys could be obtained by plasma nitriding. ($H_v$ :100gf, diffusion layer : 1100~$1450kg/mm^2$, matrix : 330~$360kg/mm^2$) The wear resistance of $FeAl/SiC_p$ composites were improved about by 4~6times than FeAl and nitrided $FeAl/SiC_p$ were improved about 2 times than $FeAl/SiC_p$ matrix.

  • PDF

유리섬유/에폭시 복합절연재료의 계면 접착력 개선에 관한 연구 2

  • 김순태;황영한;박홍태;엄무수;이규철;이종호
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.434-442
    • /
    • 1995
  • To improve dielectric and mechanical properties of insulating composite by plasma surface treatment, new plasma surface treatment process is designed with concentric and hemi-circle electrodes system. the plasma, which is generated between anode and cathode, is induced to the upper side of the electrode system and treats the surface of the insulators. The optimal surface treatment condition is that pressure : 0.5[torr], flux density : 100[gauss], discharge current : 500[mA] and treatment time : 3 minutes. The composite filled with glass cloth surface-treated by plasma shows the improvement in electric and mechanical properties, comparing non- and coupling agent treated samples.

  • PDF