• Title/Summary/Keyword: Plasma Kinetics

Search Result 103, Processing Time 0.023 seconds

On The Etching Mechanism of $ZrO_2$ Thin Films in Inductively Coupled $BCl_3$/Ar Plasma

  • Kim, Man-Su;Jung, Hee-Sung;Min, Nam-Ki;Lee, Hyun-Woo;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.83-84
    • /
    • 2007
  • $BCl_3$/Ar ICP 플라즈마를 이용한 $ZrO_2$ 박막의 식각 메카니즘이 실험 결과와 모델링을 통해 연구되었다. Ar 가스의 증가에 따라, $ZrO_2$의 식각 속도는 선형 변화의 경향을 보이지 않았고, Ar의 약 30% - 35%에서 41.4nm/min의 최대의 속도를 나타내었다. Langmuir probe 측정과 plasma 모델링 결과로부터, $BCl_3$/Ar 가스 혼합비가 플라즈마 파라미터와 active species의 형성에 큰 영향을 미침을 확인하였다. 한편 surface kinetics 모델링 결과로부터, $ZrO_2$의 식각 속도는 ion-assisted chemical reaction mechanism 에 의해 결정됨을 확인하였다.

  • PDF

Synthesis and Characterization of SnO2 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition Using SnCl4 Precursor and Oxygen Plasma

  • Lee, Dong-Gwon;Kim, Da-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.254-254
    • /
    • 2016
  • Tin dioxide (SnO2) thin film is one of the most important n-type semiconducting materials having a high transparency and chemical stability. Due to their favorable properties, it has been widely used as a base materials in the transparent conducting substrates, gas sensors, and other various electronic applications. Up to now, SnO2 thin film has been extensively studied by a various deposition techniques such as RF magnetron sputtering, sol-gel process, a solution process, pulsed laser deposition (PLD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) [1-6]. Among them, ALD or plasma-enhanced ALD (PEALD) has recently been focused in diverse applications due to its inherent capability for nanotechnologies. SnO2 thin films can be prepared by ALD or PEALD using halide precursors or using various metal-organic (MO) precursors. In the literature, there are many reports on the ALD and PEALD processes for depositing SnO2 thin films using MO precursors [7-8]. However, only ALD-SnO2 processes has been reported for halide precursors and PEALD-SnO2 process has not been reported yet. Herein, therefore, we report the first PEALD process of SnO2 thin films using SnCl4 and oxygen plasma. In this work, the growth kinetics of PEALD-SnO2 as well as their physical and chemical properties were systemically investigated. Moreover, some promising applications of this process will be shown at the end of presentation.

  • PDF

Synthesis and Characterization of Adsorbent for Pb(II)-capture by using Glow Discharge Electrolysis Plasma

  • Gao, Jinzhang;Wang, Youdi;Yang, Wu;Li, Yan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.406-414
    • /
    • 2010
  • A novel polyacrylamide grafted hydrous ferric oxide adsorbent composite has been synthesized by using glow discharge electrolysis plasma. To optimize the synthesis conditions, the following parameters were examined in detail: applied power, discharge time, post polymerization temperature, post polymerization time, amount of crosslinking agent and hydrous ferric oxide gel added and so on. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The removal percentage of the adsorbent in Pb(II) solution was examined and the data obtained showed that the adsorbent composite has a high capacity for lead ion. For the use in wastewater treatment, the thermodynamic and kinetic of Pb(II)-capture were also studied. Results indicated that the adsorption reaction was a spontaneous and an endothermic process, and it seems to be obeyed a pseudo-secondorder rate model. Moreover, the adsorption isotherm of Pb(II)-capture is following the Langmuir and Freundlich isotherm models.

Photocatalytic Property of Nano-Structured TiO$_2$ Thermal Splayed Coating - Part I: TiO$_2$ Coating - (나노구조 TiO$_2$ 용사코팅의 미세조직 제어 공정기술 개발과 광촉매 특성평가 - Part I: TiO$_2$코팅 -)

  • 이창훈;최한신;이창희;김형준;신동우
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Nano-TiO$_2$ photocatalytic coatings were deposited on the stainless steel 304(50$\times$70$\times$3mm) by the APS(Atmospheric Plasma Spraying). Photocatlytic reaction was tested in MB(methylene blue) aqueous solution. For applying nano-TiO$_2$ powders by thermal spray, the starting nano-TiO$_2$ powder with 100% anatase crystalline was agglomerated by spray drying. Plasma second gas(H$_2$) flow rate and spraying distance were used as principal process parameters which are known to control heat enthalpy(heat input). The relationship between process parameters and the characteristics of microstructure such as the anatase phase fraction and grain size of the TiO$_2$ coatings were investigated. The photo-decomposition efficiency of TiO$_2$ coatings was evaluated by the kinetics of MB aqueous solution decomposition. It was found that the TiO$_2$ coating with a lower heat input condition had a higher anatase fraction, smaller anatase grain size and a better photo-decomposition efficiency.

Vitamin $B_6$ and Folate Status in Alcohol Dependent Rural Elderly People in Korea (농촌지역 알코올 의존자들의 비타민 $B_6$ 및 엽산 영양상태)

  • 장남수
    • Journal of Nutrition and Health
    • /
    • v.33 no.3
    • /
    • pp.257-262
    • /
    • 2000
  • This paper is to report our findings that vitamin B6 and folate nutritional state in the rural elderly population with alcohol dependency is poor. The present study was carried out to assess vitamin B6 and folate status in the 17 rural elderly subjects with alcohol dependency and 15 age-and sex-matched controls. Plasma and red cell folate concentrations were analyzed microbiologically, and pyridoxal-5-phosphate dependent erythrocyte alanine aspartate transminase(EAST) activity coefficients were determined using enzyme-coenzyme saturation kinetics. There was no difference in the amount of vitamin consumed between the two groups, and their intakes were 64% and 74.7%, respectively of the Korean dietary recommended allowances for vitamin B6 and folate. The mean percent activation for EAST of the total subjects was greater than 80%, suggesting an inadequate vitamin B6 status between the two groups. Folate concentrations in the red cell, but not in the plasma were significantly lower in the alcohol dependent(141.9ng/ml) subjects than that of the control(233.2ng/ml). Cigarette smokers had lower vitamin B6 and folate levels. Plasma and red cell folate levels were highest among the non-smoking, non-alcohol dependent subjects(11.7 and 257.3ng/ml, respectively) and lowest in the smoker-alcohol dependent group(6.7 and 132.9ng/ml). Finding ways to improve vitamin nutritional state such as vitamin supplementation might be necessary for the rural elderly people, especially for those with alcohol dependency.

  • PDF

Characteristics of Oxide Layers Formed on Al2021 Alloys by Plasma Electrolytic Oxidation in Aluminate Fluorosilicate Electrolyte

  • Wang, Kai;Koo, Bon-Heun;Lee, Chan-Gyu;Kim, Young-Joo;Lee, Sung-Hun;Byon, Eung-Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.308-311
    • /
    • 2008
  • Oxide layers were prepared on Al2021 alloys substrate under a hybrid voltage of AC 200 V (60 Hz) combined with DC 260 V value at room temperature within $5{\sim}60\;min$ by plasma electrolytic oxidation (PEO). An optimized aluminate-fluorosilicate solution was used as the electrolytes. The surface morphology, thickness and composition of layers on Al2021 alloys at different reaction times were studied. The results showed that it is possible to generate oxide layers of good properties on Al2021 alloys in aluminate-fluorosilicate electrolytes. Analysis show that the double-layer structure oxide layers consist of different states such as ${\alpha}-{Al_2}{O_3}$ and ${\gamma}-{Al_2}{O_3}$. For short treatment times, the formation process of oxide layers follows a linear kinetics, while for longer times the formation process slows down and becomes a steady stage. During the PEO processes, the average size of the discharge channels increased gradually as the PEO treatment time increased.

Effect of Uranyl Nitrate-Induced Acute Renal Failure on the Pharmacokinetics of Sulfobromophthalein in Rats

  • Park, Gun-Hwa;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.13 no.3
    • /
    • pp.233-239
    • /
    • 1990
  • The efect of acute renal failure (ARF) on the pharmacokinetics o sulfobromophthalein (BSP) was investigated in order to elucidate if renal failure modifies the hepatic metabolism of drugs. ARF was induced by intravenous (iv) injection of uranyl nitrate (UN) to rats (5 mg/kg) five days before the experiment. Area under the plasma concentration-time curve (AUC)of BSP after portal vein (pv) injection increased by 2-fold and total body clearance ($CL_1$) decreased one half (p <0.01) in UN-induced ARF (UN-ARF) rate compared to the control rats. But the plasma disappearance of BSP after iv injection did not differ significantly between control and UN-ARF rats. Since BSP is excreted via the liver, $CL_1$ represented the approximate hepatic clearance of BSP. Therefore, the decrease in $CL_1$ represented the approximate hepatic clearance of BSP. Therefore, the decrease in $CL_1$ represents a decrease in hepatic intrinsic clearance ($CL_{int}$) for BSP since plasma free fraction ($f_p$) of BSP was not affected by UN-ARF. The content of hepatic cytoplasmic Y-protein, which catalyzes BSP-glutathione conjugation and limits the trasfer of BSP from blood to bile, increased significantly (p < 0.01), however its binding activity (BA) for BSP was decreased significantly (p <0.01) by UN-ARF. The decrease in $CL_{int}$might have some correlation with the changed characteristics of hepatic Y-protein, specifically its decreased BA for BSP.

  • PDF

Solution Plasma Synthesis of BNC Nanocarbon for Oxygen Reduction Reaction

  • Lee, Seung-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.332-336
    • /
    • 2018
  • Alkaline oxygen electrocatalysis, targeting anion exchange membrane alkaline-based metal-air batteries has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth-abundant elements instead of precious metals in alkaline media still remain in high demand. One of the most inexpensive alternatives is carbonaceous materials, which have attracted extensive attention either as catalyst supports or as metal-free cathode catalysts for oxygen reduction. Also, carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, B, S or P) doping on carbon materials can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Here, we focused on boron and nitrogen doped nanocarbon composit (BNC nanocarbon) catalysts synthesized by a solution plasma process using the simple precursor of pyridine and boric acid without further annealing process. Additionally, guidance for rational design and synthesis of alkaline ORR catalysts with improved activity is also presented.

Influence of Dietary Salinomycin on Feeding-induced Variations of Glucose Kinetics and Blood Volatile Fatty Acids and Insulin Concentrations in Sheep Fed a High-roughage Diet

  • Fujita, Tadahisa;Itoh, Takahiro;Majima, Hiroya;Sano, Hiroaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.365-372
    • /
    • 2007
  • This study was conducted to determine effects of salinomycin (SL) on feeding-induced changes in glucose kinetics and blood VFA concentrations in sheep fed a high-roughage diet. Four sheep were fed the diet with or without 20 mg/kg diet of SL once daily for 21 d. Glucose entry and utilization rates were determined during the prefeeding and 3 h postfeeding periods, using a [$^{13}C_6$]glucose dilution method and non-steady state equations. Ruminal characteristics and concentrations of blood VFA, plasma glucose and insulin were also measured during the same periods. A feeding-induced increase in ruminal total VFA concentration tended to be inhibited (p<0.10) with SL, although ruminal pH was unaffected (p>0.10) with SL or by feeding. Salinomycin decreased (p<0.05) acetate proportion and increased (p<0.05) propionate proportion in the rumen, but did not modify these changes in response to feeding (p>0.10). A feeding-induced increase in blood acetate concentration was attenuated (p<0.05) with SL. Salinomycin tended to increase (p<0.10) blood propionate concentration without modifying its response patterns to feeding (p>0.10). Plasma concentrations of glucose or insulin were unaffected (p>0.10) with SL. Salinomycin tended to enhance (p<0.10) glucose entry and utilization rates. Feeding also enhanced (p<0.01) both rates, whereas their interactive effect was not detected (p>0.10). We conclude that SL possibly enhances whole body glucose entry and utilization with an increase in blood propionate concentration in sheep given a high-roughage diet, although SL does not appear to affect their responses to feeding.

Low-Pressure Plasma Inactivation of Escherichia coli (감압 플라즈마를 이용한 Escherichia coli 살균)

  • Mok, Chulkyoon;Song, Dong-Myung
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.202-207
    • /
    • 2010
  • Low-pressure plasmas (LPPs) were generated with different gases such as air, oxygen and nitrogen, and their inactivation effects against Escherichia coli were compared in order to evaluate the potential as a non-thermal microbial disinfection technology. Homogeneous plasmas were generated under low pressure below 1 Torr at gas flow rate of 350 mL/min regardless the types of gases. Temperature increases by LPPs were not detrimental showing less than ${10^{\circ}C}$ and ${25^{\circ}C}$ increases after 5 and 10 min treatments, respectively. The smallest temperature increase was observed with air LPP, and followed by oxygen and nitrogen LPPs. More than 5 log reduction in E. coli was achieved by 5 min LPP treatment but the destruction effect was retarded afterward. The LPP inactivation was represented by a iphasic first order reaction kinetics. The highest inactivation rate constant was achieved in air LPP and followed by oxygen and nitrogen LPPs. The small D-values of the LPP also supported its potentialities as a non-thermal food surface disinfection technology in addition to the substantial microbial reduction of more than 5 logs.