• Title/Summary/Keyword: Plasma Kinetics

Search Result 103, Processing Time 0.018 seconds

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF

Mammary Performance of First Lactation Bali Cows (Bibos banteng) Fed Grass-Legume Based Diets in Relation to the Role of Glucose

  • Sukarini, I.A.M.;Sastradipradja, Djokowoerjo;Nusada, N.;Mahardika, I.G.;Kiranadi, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.615-623
    • /
    • 2001
  • A study of mammary function in relation to glucose metabolism of first lactation Bali cows on grass-legume diets was carried out using 12 primiparous cows (initial BW $263.79{\pm}21.66kg$) for 16 weeks starting immediately post calving. The animals were randomly allocated into 4 dietary treatment groups R1, R2, R3 and R4, receiving from the last 2 months of pregnancy onwards, rations based on a mixture of locally available grass and legume feed ad libitum. On a DM basis R1 contained 70% elephant grass (PP, Penicetum purpureum) plus 30% Gliricidia sepia leaves (GS), R2 was 30% PP plus 25% GS supplemented with 55% Hibiscus tilliacius leaves (HT, defaunating effect), R3 and R4 were 22.5% PP+41.25% GS+11.25% HT+25% concentrate, with R4 supplemented with zinc-diacetate. TDN, CP and zinc contents of the diets were 58.2%, 12.05% and 18.3 mg/kg respectively for R1, 65.05%, 16.9% and 25.6 mg/kg respectively for R2, 66.03%, 16.71% and 29.02 mg/kg respectively for R3 and 66.03%, 16.71% and 60.47 mg/kg respectively for R4. Milk production and body weights were monitored, an energy and protein balance trial conducted, overall glucose kinetics parameters assessed, mammary blood flow (MBF) and metabolite arteriovenous differences (${\Delta}AVs$) measured to get uptake data and mammary performance relationships. Parameters of glucose kinetics at peak lactation or during dry condition were not affected by ration quality. Glucose pool size, space of distribution and flux increased by 61.77, 62.26 and 82.08%, respectively, during lactation compared to the dry period. Mean glucose flux of lactating Bali cows was $5.52mg/min.kgBW^{0.807}$ which resembles the range of values of temperate dairy cows. Calculation showed that glucose requirements for maintenance, milk lactose and fat-glycerol synthesis, and the formation of NADPH reached 461.69 g for a yield of 1 kg/d or equal to 320.62 mg/min, which was less than the average glucose flux of lactating Bali cows of 481.35 mg/min. Mammary blood flow (MBF) values ranged from 56 to 83 l/h for the different treatments and the ratio MBF per kg milk produced improved from av. 1540 l/kg for R1 to av. 967 l/kg for R4 treated cows. Mammary glucose uptake ranged from 6.27 to 12.03 g/h or 120 to 140 g/kg milk. Glucose uptake was mass-wise 2 to 4 times the amount secreted as lactose, which indicated values less than the calculated mammary glucose needs and that little lactose was synthesized. The excess glucose taken-up was used for other metabolic processes. Linear relationships between metabolite ${\Delta}AVs$ and arterial blood plasma concentration [A] showed that in Bali cows triglycerides (TG), phenylalanine (Phe) and tyrosine (Tyr) have high coefficients of determination, i.e. 0.77, 0.81 and 0.69, respectively. For glucose, the relationship is quadratic with an $R^2$ value of 0.49. It was concluded that lactose synthesis was inadequate, which led to a speculation that milk yield could be improved by increased lactose synthesis.

Sodium Dependent Taurine Transport into the Choroid Plexus, the Blood-Cerebrospinal Fluid Barrier

  • Chung, Suk-Jae;Ramanathan, Vikram;Brett, Claire M.;Giacomini, Kathleen M.
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.7-20
    • /
    • 1995
  • Taurine, a ${\beta}-amino$ acid, plays an important role as a neuromodulator and is necessary for the normal development of the brain. Since de novo synthesis of taurine in the brain is minimal and in vivo studies suggest that taurine dose not cross the blood-brain barrier, we examined whether the choroid plexus, the blood-cerebrospinal fluid (CSF) barrier, plays a role in taurine transport in the central nervous system. The uptake of $[^3H]-taurine$ into ATP depleted choroid plexus from rabbit was substantially greater in the presence of an inwardly directed $Na^+$ gradient taurine accumulation was negligible. A transient in side-negative potential gradient enhanced the $Na^+-driven$ uptake of taurine into the tissue slices, suggesting that the transport process is electrogenic, $Na^+-driven$ taurine uptake was saturable with an estimated $V_{max}$ of $111\;{\pm}\;20.2\;nmole/g/15\;min$ and a $K_M\;of\;99.8{\pm}29.9\;{\mu}M$. The estimated coupling ratio of $Na^+$ and taurine was $1.80\;{\pm}\;0.122.$ $Na^+-dependent$ taurine uptake was significantly inhibited by ${\beta}-amino$ acids, but not by ${\alpha}-amino$ acids, indicating that the transporter is selective for ${\beta}-amino$ acids. Since it is known that the physiological concentration of taurine in the CSF is lower than that in the plasma, the active transport system we characterized may face the brush border (i.e., CSF facing) side of the choroid plexus and actively transport taurine out of the CSF. Therefore, we examined in vivo elimination of taurine from the CSF in the rat to determine whether elimination kinetics of taurine from the CSF is consistent with the in vitro study. Using a stereotaxic device, cannulaes were placed into the lateral ventricle and the cisterna magna of the rat. Radio-labelled taurine and inulin (a marker of CSF flow) were injected into the lateral ventricle, and the concentrations of the labelled compounds in the CSF were monitored for upto 3 hrs in the cisterna magna. The apparent clearance of taurine from CSF was greater than the estimated CSF flow (p<0.005) indicating that there is a clearance process in addition to the CSF flow. Taurine distribution into the choroid plexus was at least 10 fold higher than that found in other brain areas (e. g., cerebellum, olfactory bulb and cortex). When unlabelled taurine was co-administered with radio-labelled taurine, the apparent clearance of taurine was reduced (p<0.0l), suggesting a saturable disposition of taurine from CSF. Distribution of taurine into the choroid plexus, cerebellum, olfactory bulb and cortex was similarly diminished, indicating that the saturable uptake of taurine into these tissues is responsible for the non-linear disposition. A pharmacokinetic model involving first order elimination and saturable distribution described these data adequately. The Michaelis-Menten rate constant estimated from in vivo elimination study is similar to that obtained in the in vitro uptake experiment. Collectively, our results demonstrate that taurine is transported in the choroid plexus via a $Na^+-dependent,saturable$ and apparently ${\beta}-amino$ acid selective mechanism. This process may be functionally relevant to taurine homeostasis in the brain.

  • PDF