• 제목/요약/키워드: Plasma DNA

Search Result 266, Processing Time 0.035 seconds

The Study of DNA Damage Induced by Atmospheric Pressure Plasma Jet and Their Mechanisms

  • Park, Yeunsoo;Song, Mi-Young;Yoon, Jung-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.1-155.1
    • /
    • 2013
  • The goals of this study are to elucidate the plasma effects on DNA molecules to apply some plasma based applications and also to find out the mechanisms of plasma-induced DNA damage in biomolecule. Nonthermal atmospheric pressure plasma has much potential for medical, agricultural and food applications for the future. The atmospheric pressure plasma jet (APPJ) contains radicals, charged particles, low energy electrons, excited molecules and UV light. It has been started doing experiments using APPJ at the early 21th. And some recent results showed that APPJ has a possibility to apply to new fields like mentioned above. But it is kind of at the very early stages of plasma based application. It is definitely necessary much of theoretical and experimental studies to further understanding to use nonthermal atmospheric pressure plasma in biomedical, agriculture and food parts. Here we introduce a new experimental system to study plasma effects on biomolecules. And we will show some recent results of LEE-induced DNA damage using electron irradiation apparatus under ultra-high vacuum.

  • PDF

High Resolution Melting Analysis for Epidermal Growth Factor Receptor Mutations in Formalin-fixed Paraffin-embedded Tissue and Plasma Free DNA from Non-small Cell Lung Cancer Patients

  • Jing, Chang-Wen;Wang, Zhuo;Cao, Hai-Xia;Ma, Rong;Wu, Jian-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6619-6623
    • /
    • 2013
  • Background:The aim of the research was to explore a cost effective, fast, easy to perform, and sensitive method for epidermal growth factor receptor (EGFR) mutation testing. Methods: High resolution melting analysis (HRM) was introduced to evaluate the efficacy of the analysis for dectecting EGFR mutations in exons 18 to 21 using formalin-fixed paraffin-embedded (FFPE) tissues and plasma free DNA from 120 patients. Results: The total EGFR mutation rate was 37.5% (45/120) detected by direct sequencing. There were 48 mutations in 120 FFPE tissues assessed by HRM. For plasma free DNA, the EGFR mutation rate was 25.8% (31/120). The sensitivity of HRM assays in FFPE samples was 100% by HRM. There was a low false-positive mutation rate but a high false-negative rate in plasma free DNA detected by HRM. Conclusions: Our results show that HRM analysis has the advantage of small tumor sample need. HRM applied with plasma free DNA showed a high false-negative rate but a low false-positive rate. Further research into appropriate methods and analysis needs to be performed before HRM for plasma free DNA could be accepted as an option in diagnostic or screening settings.

The Oxidative Stress by Hair Dyeing Changes the Antioxidant Defense Systems and Strongly Relates to the Plasma Vitamin E Concentration

  • Sim Mi-Ja;Kim Young-Chul;Lim Hyun-Ae;Son In-Suk;Kwun In-Sook;Kwon Chong-Suk
    • Nutritional Sciences
    • /
    • v.8 no.4
    • /
    • pp.262-267
    • /
    • 2005
  • Reactive oxygen species can be generated in the skin by hair dyeing. The aim of this study was to find out the effects of the oxidative-type hair dye application in young women on the antioxidant systems. We investigated the lipid peroxide levels, glutathione (GSH) levels, and the antioxidant enzyme activities including superoxide dismutase (SOD), glutathione peroxidase (GSHPx) in plasma and erythrocytes and catalase (CAT) in erythrocytes, and DNA damages in lymphocytes. Also, plasma concentrations of antioxidant vitamins, vitamin A and E, were measured and the correlations between various antioxidant parameters and oxidative damages were evaluated The antioxidant enzyme activities in plasma (GSHPx) and in erythrocytes (SOD and CAT) were decreased significantly after hair dyeing. 1be lipid peroxide and GSH levels were not affected in both plasma and erythrocytes. No significant difference was found in the concentrations of both vitamin A and E between before and after hair dyeing. However, DNA damages expressed as the tail extent moment (TEM) and tail length (TL) were significantly (p<0.001) increased. The plasma vitamin E concentration was correlated with DNA damages (TEM: r=-0.590, p<0.01 and TL: r=-0.533. p<0.01) and RBC SOD activity (r=0.570, p<0.05). In turn, RBC SOD activity was significantly correlated with both plasma MDA levels (r=-0.412, p<0.05) and DNA damages (TM: r=-0.546, p<0.01, TL: r=-0.493, p<0.01). Our results demonstrated that the exposure to hair dyeing produced lymphocyte DNA damage and modification of the antioxidant enzyme activities. Also, there were very strong associations between plasma vitamin E concentration, RBC SOD activity and DNA damage induced by hair dyeing. It suggests that the antioxidant status of a subject is likely to be related to the extent of the harmful effects caused by hair dyeing.

Effects of HgCl2 on plasma DNA content and blood biochemical values in rats (랫드에서 수은이 혈장 DNA와 혈액화학치에 미치는 영향)

  • Cho, Joon-Hyoung;Jeong, Sang-Hee;Kang, Hwan-Goo;Yun, Hyo-In
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.641-648
    • /
    • 2003
  • Changes of plasma DNA contents and serum biochemical values were measured in rats administered with $HgCl_2$ to investigate the in vivo cytotoxic effects of mercury and examine the usefulness of these changes as indicators of mercury exposure and diagnosis of mercury poisoning. Rats were given once intraperitonealy $HgCl_2$(0.13. 0.32. 0.8 and 2 mg/kg b.w) and the changes of plasma DNA contents and serum biochemical values were measured at the time of 2, 4, 8, 24, 48 and 72 hours after the administration of $HgCl_2$. Plasma DNA contents began to increase from 2 hours after the administration of $HgCl_2$ in all the treatment groups significantly compared to control with dose-dependent pattern. The levels of plasma DNA reached to peak at 48 hours as 2.77, 7.60, 15.46 and 16.51 times higher than control in each treatment group of 0.13, 0.32, 0.8 and 2 mg/kgb.w, respectively and remained to be higher until 72 hours after the administration. The values of creatine kinase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, blood urea nitrogen and glucose of serum were increased, however the values of alkaline phosphatase, total protein and triglyceride were decreased. These changes of increase and decrease showed dose-dependent pattern but the starting time, maintenance and magnitude of change were various and characteristic according to serum biochemical indices. Among the changes of serum biochemical values, those of aspartate aminotransferase, lactate dehydrogenase and blood urea nitrogen were apparently and significantly increased compared to control from 2 to 72 hours by the administration of 2 mg/kg $HgCl_2$. This study demonstrates that plasma DNA and serum biochemical values such as aspartate aminotransferase, lactate dehydrogenase, blood urea nitrogen and etc. are valuable as biomarkers for mercury exposure assessment and diagnosis of mercury poisoning.

Effects of Dietary Folate Content on Folate Concentration and DNA Strand Breaks after Alkaline Treatment in Immune Cells (식이엽산함량이 흰쥐의 면역세포의 엽산농도와 알칼리 처리후의 DNA 이중 나산선 잔존율에 미치는 영향)

  • 장남수
    • Journal of Nutrition and Health
    • /
    • v.32 no.6
    • /
    • pp.654-660
    • /
    • 1999
  • Folate, a precursor of the coenzyme tetrahydrofolate, plays an important role in DNA replication and cell proliferation, and thus could influence rapidly proliferating immune cells such as leukocytes and splenocytes. The effects of dietary folate on folate concentrations of plasma, thymus, spleen and leukocytes were investigated in rats. The animals were raised for 6 weeks on semipurifed experimental diets containing 0mg, 2mg, 4mg, 8mg folate/kg diet. Folate concentrations were determined microbiologically using Lactobacillus casei(ATCC 7469), and DNA strand breaks produced by alkaline treatment were analyzed fluorometrically. When compared to folate adequate diet, the folate deficient diet(0mg folate/kg diet) resulted in lowest folate levels in plasma, thymus, spleen and leukocytes, and the highest DNA strand breaks in spleen cells and leukocytes. Dietary folate levels significantly increased folate concentrations of immune tissues, leukocytes, and the plasma in a dose dependent manner, folate concentrations being highest with a diet providing 8mg folate/kg diet. The percentages of the double strand DNA remaining in the splenocytes and leukocytes after alkaline treatment were significantly increased with higher amounts of dietary folate in a dose dependent manner. Folate intakes of 8mg than 4mg/kg diet was found to be more effective in the prevention of DNA strand breaks. The results of this study suggest that increased folate above the requirement level could improve DNA stabilities in immune cells.

  • PDF

Lymphocyte DNA Damage and Anti-Oxidative Parameters are Affected by the Glutathione S-Transferase (GST) M1 and T1 Polymorphism and Smoking Status in Korean Young Adults (흡연 여부에 따른 Glutathione S-transferase (GST) M1 및 T1 유전자 다형성이 우리나라 젊은 성인의 임파구 DNA 손상과 항산화 영양상태 지표들 간의 관련성에 미치는 영향)

  • Han, Jeong-Hwa;Lee, Hye-Jin;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.44 no.5
    • /
    • pp.366-377
    • /
    • 2011
  • Glutathione S-transferase (GST) is a multigene family of phase II detoxifying enzymes that metabolize a wide range of exogenous and endogenous electrophilic compounds. GSTM1 and GSTT1 gene polymorphisms may account for inter-individual variability in coping with oxidative stress. We investigated the relationships between the level of lymphocyte DNA and antioxidative parameters and the effect on GST genotypes. GSTM1 and GSTT1 were characterized in 301 young healthy Korean adults and compared with oxidative stress parameters such as the level of lymphocyte DNA, plasma antioxidant vitamins, and erythrocyte antioxidant enzymes in smokers and non smokers. GST genotype, degree of DNA damage in lymphocytes, erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase (GSH-Px), and plasma concentrations of total radical-trapping antioxidant potential (TRAP), vitamin C, ${\alpha}$- and ${\gamma}$-tocopherol, ${\alpha}$- and ${\beta}$-carotene, and cryptoxanthin were analyzed. Lymphocyte DNA damage assessed by the comet assay was higher in smokers than that in non-smokers, but the levels of plasma vitamin C, ${\beta}$-carotene, TRAP, erythrocyte catalase, and GSH-Px were lower than those of non-smokers (p < 0.05). Lymphocyte DNA damage was higher in subjects with the GSTM1- or GSTT1-present genotype than those with the GSTM1-present or GSTT1- genotype. No difference in erythrocyte antioxidant enzyme activities, plasma TRAP, or vitamin levels was observed in subjects with the GSTM1 or GSTT1 genotypes, except ${\beta}$-carotene. Significant negative correlations were observed between lymphocyte DNA damage and plasma levels of TRAP and erythrocyte activities of catalase and GSH-Px after adjusting for smoking pack-years. Negative correlations were observed between plasma vitamin C and lymphocyte DNA damage only in individuals with the GSTM1-present or GSTT1- genotype. The interesting finding was the significant positive correlations between lymphocyte DNA damage and plasma levels of ${\alpha}$-carotene, ${\beta}$-carotene, and cryptoxanthin. In conclusion, the GSTM1- and GSTT1-present genotypes as well as smoking aggravated antioxidant status through lymphocyte DNA damage. This finding confirms that GST polymorphisms could be important determinants of antioxidant status in young smoking and non-smoking adults. Consequently, the protective effect of supplemental antioxidants on DNA damage in individuals carrying the GSTM1- or GSTT1-present genotypes might show significantly higher values than expected.

The Associations between Plasma Concentrations of Total Radical-Trapping Antioxidant Potential(TRAP), Antioxidant Vitamins and DNA Damage in Human Lymphocytes (혈장 총 율기 포집 능력(TRAP) 수준 및 항산화 비타민 영양상태와 인체 임파구 DNA 손상정도와의 상호관련성 연구)

  • 강명희
    • Journal of Nutrition and Health
    • /
    • v.34 no.4
    • /
    • pp.401-408
    • /
    • 2001
  • The spontaneous frequency of genetic damage and the possible relationship of this damage to total radical-trapping antioxidant potential(TRAP) and antioxidant vitamins, including plasma levels of $\alpha$-carotene, $\beta$-carotene, cryptoxanthin, retinol, $\alpha$-tocopherol and ${\gamma}$-tocopherol in humans were investigated in 57 subjects using two indices of genetic damage, SCE & HFC frequency. The mean of SCE and HFC frequencies were weakly correlated with plasma TRAP(r=-0.305, p<0.1 for SCEs: r=-0.297, p<0.1 for HFCs, respectively), but those were strongly negatively correlated with plasma $\beta$-carotence(r=-0.385, p<0.01 for SCEs : r=-0.392, p<0.01 for HFCs) and cryptoxanthin(r=-0.312, p<0.05 for SCEs : r=0.335, p<0.05 for HFCs, respectively) levels in the subjects. However, those DNA damage markers including SCE and HFC did not correlate with either plasma $\alpha$-carotene, $\alpha$-tocopherol or retinol concentrations. The mean of SCE and HFC frequencies were positively correlated with plasma ${\gamma}$-tocopherol level(r=0.421, p<0.01 for SCEs : r=0.399, p<0.01 for HFCs, respectively). These findings indicate that increased cytogenetic DNA changes, as determined by SCE and HFC frequencies are possibly associated with generation of free radicals in lymphocytes and decreased plasma antioxidant vitamin($\beta$-carotene and cryptoxanthin) status in the subjects. (Korean J Nutrition 34(4) : 401~08, 2001)

  • PDF

Clinical Significance of Quantitative Analysis of Plasma Epstein-Barr Virus DNA in Patients of Xinjiang Uygur Nationality with Hodgkin's Lymphoma

  • Li, Xun;Yang, Shun-E.;Guo, Yun-Quan;Shen, Ming-Xia;Gu, Li;Gulikezi, Gulikezi;Zhao, Bing;Liu, Wei;Tuerxun, Tuerxun;Bai, Jing-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6379-6384
    • /
    • 2012
  • Objective: To investigate the relationship between plasma EBV-DNA concentration and clinicopathologic features of Hodgkin's lymphoma cases. Methods: At first, the positive rate of plasma EBV-DNA was determined with a nested-PCR method using 45 specimens from Uygur HL patients, as well as 110 healthy people sampled as normal controls. Secondly, using fluorescent quantitative nested-PCR, EBV viral load was assessed in the EBV-DNA positive plasma samples. Then, relationships between plasma EBV viral load and clinicopathologic features of HL patients were analyzed. Results: The positive rate of plasma EBV-DNA of HL patients was significantly higher than that of normal controls (53.3% vs 26.4%, P=0.001). There was no significant difference about plasma EBV viral load between EBV-associated HL and EBV-DNA positive normal people (P=0.490). Looking at patients' characteristics, plasma EBV viral load in 10-20 years EBV-associated HL was higher than in EBV cases which were less than 10 years or more than 35 years (P=0.025). Furthermore, in EBV-associated HL, concentration of plasma EBV-DNA was significantly higher in advanced stage disease (stages III-IV; P=0.013), and with B-symptoms (P=0.020). Conclusion: EBV-DNA levels were associated with part of clinicopathologic features of cases. It was of practical use to screen HL. Further etiological studies appear warranted.

A plant-based multivitamin, multimineral, and phytonutrient supplementation enhances the DNA repair response to metabolic challenges

  • Yeo, Eunji;Hong, Jina;Kang, Seunghee;Lee, Wonyoung;Kwon, Oran;Park, Eunmi
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.450-461
    • /
    • 2022
  • Purpose: DNA damage and repair responses are induced by metabolic diseases and environmental stress. The balance of DNA repair response and the antioxidant system play a role in modulating the entire body's health. This study uses a high-fat and high-calorie (HFC) drink to examine the new roles of a plant-based multivitamin/mineral supplement with phytonutrients (PMP) for regulating the antioxidant system and cellular DNA repair signaling in the body resulting from metabolic stress. Methods: In a double-blind, randomized, parallel-arm, and placebo-controlled trial, healthy adults received a capsule containing either a PMP supplement (n = 12) or a placebo control (n = 12) for 8 weeks. Fasting blood samples were collected at 0, 1, and 3 hours after consuming a HFC drink (900 kcal). The blood samples were analyzed for the following oxidative stress makers: areas under the curve reactive oxygen species (ROS) levels, plasma malondialdehyde (MDA), erythrocytes MDA, urinary MDA, oxidized low-density lipoprotein, and the glutathione:oxidized glutathione ratio at the time points. We further examined the related protein levels of DNA repair signaling (pCHK1 (Serine 345), p-P53 (Serine 15), and 𝛄H2AX expression) in the plasma of subjects to evaluate the time-dependent effects of a HFC drink. Results: In a previous study, we showed that PMP supplementation for eight weeks reduces the ROS and endogenous DNA damage in human blood plasma. Results of the current study further show that PMP supplementation is significantly correlated with antioxidant defense. Compared to the placebo samples, the blood plasma obtained after PMP supplementation showed enhanced DNA damage response genes such as pCHK1(Serine 345) (a transducer of DNA response) and 𝛄H2AX (a hallmark of DNA damage) during the 8 weeks trial on metabolic challenges. Conclusion: Our results indicate that PMP supplementation for 8 weeks enhances the antioxidant system against oxidative stress and prevents DNA damage signaling in humans.

Antioxidative Status, DNA Damage and Lipid Profiles in Korean Young Adults by Glutathione S-Transferase Polymorphisms (Glutathione S-transferase (GST) 유전자 다형성에 따른 우리나라 젊은 성인의 항산화 상태, DNA 손상 및 지질 양상)

  • Jo, Hye-Ryun;Lee, Hye-Jin;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.44 no.1
    • /
    • pp.16-28
    • /
    • 2011
  • Oxidative stress leads to the induction of cellular oxidative damage, which may cause adverse modifications of DNA, proteins, and lipids. The production of reactive species during oxidative stress contributes to the pathogenesis of many diseases. Antioxidant defenses can neutralize reactive oxygen species and protect against oxidative damage. The aim of this study was to assess the antioxidant status and the degree of DNA damage in Korean young adults using glutathione s-transferase (GST) polymorphisms. The GSTM1 and GSTT1 genotypes were characterized in 245 healthy young adults by smoking status, and their oxidative DNA damage in lymphocytes and antioxidant status were assessed by GST genotype. General characteristics were investigated by simple questionnaire. From the blood of the subjects, GST genotypes; degree of DNA damage in lymphocytes; the erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase; plasma concentrations of total peroxyl radical-trapping potential (TRAP), vitamin C, ${\alpha}$- and ${\gamma}$-tocopherol, ${\alpha}$- and ${\beta}$-carotene and cryptoxanthin, as well as plasma lipid profiles, conjugated diene (CD), GOT, and GPT were analyzed. Of the 245 subjects studied, 23.2% were GSTM1 wild genotypes and 33.4% were GSTT1 wild genotype. No difference in erythrocyte activities of superoxide dismutase, catalase, or glutathione peroxidase, and the plasma TRAP level, CD, GOT, and GPT levels were observed between smokers and non-smokers categorized by GSTM1 or GSTT1 genotype. Plasma levels of ${\alpha}$- and ${\gamma}$-tocopherol increased significantly in smokers with the GSTT1 wild genotype (p < 0.05); however, plasma level of ${\alpha}$-carotene decreased significantly in non-smokers with the GSTM1 wild genotype (p < 0.05). DNA damage assessed by the Comet assay was significantly higher in non-smokers with the GSTM1 genotype; whereas DNA damage was significantly lower in non-smokers with the GSTT1 genotype. Total cholesterol and LDL cholesterol levels were significantly higher in non-smokers with the GSTT1 genotype than those with the GSTT1 wild genotype (p < 0.05). In conclusion, the GSTM1 genotype or the GSTT1 wild genotype in non-smokers aggravated their antioxidant status through DNA damage of lymphocytes; however, the GSTT1 wild type in non-smokers had normal plasma total cholesterol and LDL-cholesterol levels. This finding confirms that GST polymorphisms could be an important determinant of antioxidant status and plasma lipid profiles in non-smoking young adults. Further study is necessary to clarify the antioxidant status and/or lipid profiles of smokers with the GST polymorphism and to conduct a study with significantly more subjects.