• Title/Summary/Keyword: Plants fibers

Search Result 51, Processing Time 0.026 seconds

Effect of Natural Fiber Surface Treatments on the Interfacial and Mechanical Properties of Henequen/Polypropylene Biocomposites

  • Lee, Hyun-Seok;Cho, Dong-Hwan;Han, Seong-Ok
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.411-417
    • /
    • 2008
  • The surfaces of henequen fibers, which can be obtained from the leaves of agave plants, were treated with two different media, tap water and sodium hydroxide, that underwent both soaking and ultrasonic methods for the fiber surface treatment. Various biocomposites were fabricated with untreated and treated, chopped henequen fibers and polypropylene using a compression molding method. The result is discussed in terms of interfacial shear strength, flexural properties, dynamic mechanical properties, and fracture surface observations of the biocomposites. The soaking (static method) and ultrasonic (dynamic method) treatments with tap water and sodium hydroxide at different concentrations and treatment times significantly influenced the interfacial, flexural and dynamic mechanical properties of henequen/polypropylene biocomposites. The alkali treatment was more effective than the water treatment in improving the interfacial and mechanical properties of randomly oriented, chopped henequen/PP bio-composites. In addition, the application of the ultrasonic method to each treatment was relatively more effective in increasing the properties than the soaking method, depending on the treatment medium and condition. The greatest improvement in the properties studied was achieved by ultrasonic alkalization of natural fibers, which was in agreement with the other results of interfacial shear strength, flexural strength and modulus, storage modulus, and fracture surfaces.

Analysis of Gamma Radiation Effects of Commercial Radiation-Resistant Optical Fibers (내방사 광섬유의 감마선 영향 분석)

  • Ryu, Gukbeen;Kim, Young-Woong;Kim, Jong-Yeol;Hwang, Young Gwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.620-622
    • /
    • 2022
  • When an optical fiber is exposed to radiation, a color center is formed in the core, which lowers the optical transmittance of the optical fiber. This is called the radiation-induced attenuation(RIA), and research on optical fibers having improved radiation resistance by changing materials and structures is being actively conducted. This is because radiation-resistant optical fibers have the advantage that they can be used in telecommunication and optical applications even in extreme environments such as space and nuclear power plants. In this paper, the effect of gamma irradiation of commercial radiation-resistant optical fibers was analyzed.

  • PDF

Fiber Quality of Seven Mangrove Wood Species

  • ANDIANTO;Imam WAHYUDI;Rita Kartika SARI;Gustan PARI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.393-403
    • /
    • 2024
  • As an archipelagic country, Indonesia is surrounded by large and small islands. Many mangrove plant species are found along the coasts surrounding large and small islands. Besides their conservation value, mangrove plants provide various benefits, including the use of their leaves, fruit, bark, and wood as raw materials in pharmaceutical and other industries. Additionally, mangrove wood is a potential raw material for pulp and paper production. It is essential to study the fiber dimensions of the wood to identify the appropriate characteristics of raw material for pulp and paper. Therefore, in this study, we comprehensively analyzed the differences in the wood fiber dimensions of seven mangrove species from the Indramayu Regency, West Java Province, namely Avicennia alba, Bruguiera gymnorhiza, Bruguiera cylindrica, Hibiscus tiliaceus, Sonneratia ovata, Sonneratia caseolaris, and Excoecaria agallocha. For this analysis, maceration followed the Forest Product Laboratory guidelines, and preparation followed the Sass method. The fiber length, diameter, and lumen diameter were measured using a light microscope. Based on the values of the length and dimension derivatives, the fibers of these mangrove wood species were grouped into quality classes II or III for use as raw materials for the pulp and paper industry. The wood fibers of H. tiliaceus, A. alba, S. caseolaris, and E. agallocha met the quality class criterion II, whereas wood species fibers of B. gymnorhiza, B. cylindrica, and S. ovata met the quality class criterion III.

Fiber Dimensions and Chemical Properties of Various Nonwood Materials and Their Suitability for Paper Production

  • lahan M. Sarwar;Mun Sung Phil;Rashid Mamunur
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.29-35
    • /
    • 2004
  • Fiber dimensions, their derived values and chemical properties of cotton stalks (Gosypium hirsutum L), jute stick (Corchorus capsularis) and dhancha (Sesbania aculeate) have been examined to assess their suitability for paper production. Cotton stalks have a good derived values especially slender ratio, which is comparable to hardwood. The flexibility coefficient of these three non wood plants is better than hardwood. Anatomical analysis shows higher percentage of fibers and vessels than in general non wood plants. Lignin, $\alpha$-cellulose and pentosan contents in these three nonwood plants are within the range of hardwood. Neutral sugar analysis of cotton stalks, jute stick and dhancha shows that the glucose in the major sugar followed by xylose and mannose. The arabinose and galactose are present in minor amount. Alkaline nitrobenzene oxidation of cotton stalks, jute stick and dhancha wood meal exhibits that these nonwood plant lignins mainly consist of syringyl (S) and guaiacyl (V) units. The S/V ratios are 1.6, 1.2 and 2.1 for cotton stalks, jute stick and dhancha, respectively.

Laser Peening Application for PWR Power Plants (비등수형 원자로 발전소에의 레이저 피닝 적용기술)

  • Kim, Jong-Do;SANO, Yuji
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.13-18
    • /
    • 2016
  • Toshiba has developed a laser peening system for PWRs(pressurized water reactors) as well after the one for BWRs(boiling water reactors), and applied it for BMI(bottom-mounted instrumentation) nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface around J-groove welds after laser ultrasonic testing (LUT) as the remote inspection, and we peened the outer surface and the weld for Ikata Unit 2 supplementary. For core deluge line nozzles and primary water inlet nozzles, we peened the inner surface of the dissimilar metal welding, which is of nickel base alloy, joining a safe end and a low alloy metal nozzle. In this paper, the development and the actual application of the laser peening system for PWR power plants will be described.

The Effects of Cultivars and DAPs(Days After Planting) of Kenaf Plants on Lignin Contents and Dyeability of Their Fibers (품종과 재배기간이 다른 케나프 섬유의 리그닌 함량과 염색성)

  • Rhie, Jeon-Sook;Yoo, Hye-Ja;Ladisch, Christine M.
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1682-1688
    • /
    • 2007
  • The effects of cultivar and DAPs on the lignin content and dyeability of the kenaf fibers were investigated. Four kenaf fiber samples were prepared from two cultivars, Tainung 2 and Everglades 41, and their 60 and 120 DAPs(days after planting) for the experiments. The lignin contents of the kenaf fibers of Tainung 2(T2) and Everglades 41(E41) were $11.29{\sim}12.78%$. Both T2 and E41 kenaf fibers had comparable amount of lignin, and klason lignin of the fibers was $2.5{\sim}3$ times as much as much as acid-soluble lignin. In both T2 and E41, 120 DAPs kenaf have 1% more lignin than 60 DAPs kenaf. The moisture regains of the four kenaf fiber samples were almost the same as $10.25{\pm}0.05%$. The absorbances of residual solution after dyeing for $1{\sim}180$ minutes with Red 81 at maximum wavelength 520 nm and Green 26 at 600 nm were measured. Comparing to Green 26, the dyeing rate of Red 81 was rapid and equilibrium state was reached in 12 minutes. The CIE $L^*,\;a^*, \;b^*,\;{\Delta}E$ and K/S values of the kenaf fibers dyed with Red 81 and Green 26 were measured as well. The dye exhaustion ratio of 60 DAPs kenaf was higher than that of 120 DAP.

Degradation analysis of SiC fiber at elevated temperature for dust filtering applications (분진필터링 적용을 위한 SiC 섬유의 고온 열화분석)

  • Joo, Young Jun;Park, Cheong Ho;Khishigbayar, Khos-Erdene;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.28-33
    • /
    • 2017
  • SiC fiber can be used up to $1800^{\circ}C$ in both inert and air atmosphere without any problems such as melting and oxidation. SiC fibers can be applied to dust filtering processes as a bag filter at a high temperature above $700^{\circ}C$, which is far beyond the temperature range of currently available industrial bag filter. However the studies for the degradation of SiC fibers were still lacked in the harsh environment of steel industries and thermoelectric power plants. In this study, SiC fibers were reacted with steel dust and thermal power plant dust at a high temperature of $500^{\circ}C$ or higher, and the degraded shape of the fiber surface was observed by SEM. Also the degree of oxygen diffusion on the surface and inside of SiC fiber was analyzed by EDS.

Numerical Investigation of the Density and Inlet Velocity Effects on Fiber Orientation Inside Fresh SFRSCC (SFRSCC의 섬유 방향성에 미치는 입구 속도와 점성의 영향성에 대한 수치해석)

  • Azad, Ali;Lee, Jong-Jae;Lee, Jong-Han;Lee, Gun-Jun;An, Yun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.16-20
    • /
    • 2018
  • Steel Fiber reinforced self-compacting concrete (SFRSCC) has been widely used in a number of structures, such as ordinary civil infrastructures, sky scrapers, nuclear power plants, hospitals, dams, channels and etc. Thanks to its short and discrete reinforcing fibers, its performance, including tensile strength, ductility, toughness and flexural strength gets much better in comparison with ordinary self-compacting concrete (SCC) without any reinforcing fibers. Despite all these aforementioned advantages of SFRSCC, its performance highly depends on fiber's orientation. In case of short discrete fibers, the orientation of fibers is completely random and cannot be controlled during pumping process. If fibers distribution inside hardened state concrete are randomly distributed, it leads to less resistance potential of concrete element, especially in terms of flexural and tensile strength. The maximum expected strength may not be achieved. Therefore, fiber alignment has been considered as one of the important factors in SFRSCC. To address this issue, this study investigates the effects of concrete matrix's density and inlet velocity on fiber alignment during the pumping process using a finite element method.

A Study on the Reproduction Experimental of Breaking of dried stalks technique of Recorded in Oju-Yeonmunjang jeon-Sango in the late Joseon Dynasty (조선 후기 『오주연문장전산고』에 기록된 자연건조쇄경식 제섬 기술 재현 실험 연구)

  • Kong, Sanghui;Ree, Jiwon;Kim, Hajin
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.4
    • /
    • pp.170-183
    • /
    • 2019
  • Fiber scutching refers to the process of extracting fibers from plants by separating or extracting fibers from the raw materials. As the definition of the term implies, the "Fiber Scutching" is performed on plants with advanced bast fiber as the primary material processing technique performed on plant materials. Some of the most popular phosphorus plants are ramie, hemp, flax, and the paper mulberry, which have a long history of cultivation and a wide range of distribution, making them very universal as a material supporting human life and culture. This study was described in Oju-yeonmunjangjeon-sango but was designed to re-examine the method of breaking dried stalks, which is currently unused in Korea, to examine the feasibility and characteristics of the technology. As a result of sampling and experimenting with hemp bast using the method recorded in the literature, hemp fiber was actually produced. The criteria for removing the shell from the hemp stem were the degree of discoloration and drying, and only when the stalk was completely discolored to yellow could segregation of the stalk from the shell be performed. The amount of sunlight and temperature were conditions that accelerated drying. However, if exposed for a long time, it is confirmed that hemp bast will be in a suitable condition to process, regardless of the amount of sunlight and temperature. 'Breaking of dried stalks', which utilizes the physical power of 'threshing with a flail' is considered a core process of the fiber scutching technique in 'Yukjin' in Hamgyeong-do. The bark and the core of the hemp were separated by tapping, the bast was thinly split, and the shell was peeled off, making it suitable for collecting with thread. The method of collecting the fibers by applying physical power causes downing on the fibers, which is to be generally avoided in the manufacture of bast fabric woven hemp or ramie. However, Hamgyeong-do's fiber scutching method seems to have applied this principle to the method of making fragile fabrics by using it in reverse. This method is distinct from the steaming or boiling of the stalks' in Andong, Korea, and it is similar to the Western method of spinning fabrics.

Studies on the Phytoextraction of Cadmium and Lead Contaminated Soils by Plants Cultivation (토양중 카드뮴과 납의 Phytoextraction을 위한 식물재배 연구)

  • Jung, Goo-Bok;Kim, Won-Il;Moon, Kwang-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.213-217
    • /
    • 2000
  • In order to select more proper plants for phytoextraction at the heavy metal polluted areas, 11 species of non-edible plants were cultivated at the cadmium(Cd) and Lead(Pb) treated soils and analyzed the content of the absorbed Cd and Pb in each part of plants. Plants include three fibers(Linum usitatissimum, Cannabis sativa, Gossypium spp.), three flowers(Calendula officinalis, Rhododendron lateritium, Portulaca grandiflora), and five trees(Pinus thunbergii, Magnolia kobus, $Populus\;nigra\;{\times}\;P.$ maximowiczii, Euonymus japonica, Fraxinus rhynchophylla). Yield of tree species were higher than that of fiber and flower species. Cd and Pb were highly accumulated in root rather than leaves and stems. The Cd content of plants was in the order Portulaca grandiflora > Calendula officinalis > Gossypium spp. > Linum usitatissimum, Pb was Cannabis sativa > Linum usitatissimum > Fraxinus rhynchophylla. Total absorbed Cd by each plant was in the order $Populus\;nigra\;{\times}\;P.$ maximowiczii > Euonymus japonica > Rhododendron lateritium, but Pb was $Populus\;nigra\;{\times}\;P.$ maximowiczii > Rhododendron lateritium > Euonymus japonica. Total absorbed Cd and Pb contents in plants were negatively correlated with the residual Cd and Pb in the treated soils. It was estimated that $Populus\;nigra\;{\times}\;P.$ maximowiczii, Euonymus japonica, Fraxinus rhynchophylla, and Rhododendron lateritium were the most effective species for phytoextraction in the polluted area considering yield and heavy metal uptake.

  • PDF