• Title/Summary/Keyword: Plants Development and Growth

Search Result 1,008, Processing Time 0.029 seconds

The Effect of Light Intensity on the Growth and Chlorophyll Fluorescence Parameters of Three Ardisia Genus Native to Korea

  • Bo Kook Jang;Kyungtae Park;Cheol Hee Lee;Sang Yeob Lee;Ju Sung Cho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.55-55
    • /
    • 2020
  • This study investigated the growth and chlorophyll fluorescence reactions of three Ardisia genus grown under various indoor light intensity conditions with the aim of evaluating their suitability as indoor plants. Young seedlings of A. crispa (Thunb.) A.DC., A. pusilla DC., and A. japonica (Thunb.) Blume were used in the experiment. The plants were cultivated indoors for 10 weeks under different light intensities: 10, 50, 100, and 200 PPFD (μmol·m-2·s-1), and their growth was compared with that of plants cultivated in a greenhouse during the same period (mean value 236.8±20.4 PPFD at noon). Also, chlorophyll fluorescence analysis was investigated with a portable PAM fluorometer. The indoor plants were maintained at 12/12 h photoperiod, temperature at 25±1℃, and humidity at 55±3%. Irrigation frequency (once every three days) was the same for the indoors and the greenhouse. The results of growth in three Ardisia plants showed that almost all parameters except leaf number and chlorophyll content had similar levels regardless of light intensity. A. crispa and A. pusilla plants grown in 200 PPFD were investigated to have low chlorophyll contents. Meanwhile, chlorophyll fluorescence parameters differed based on light levels. In A. crispa, the Fv/Fm (0.77), DIo/RC (0.47) and Fm/Fo (4.77) parameters tended to be poor at 200 PPFD compared to those at other light intensities. Similarly, the DIo/RC, Fm/Fo, and Pi_Abs parameters of A. pusilla plant (200 PPFD) are 0.45, 4.48 and 2.42, respectively, which can be considered stress. The analysis of fluorescence in A. japonica showed that all parameters except ETo/RC had similar levels regardless of light intensity. The ETo/RC parameter was 0.49 and 0.72 in the control plants and plants 200 PPFD, respectively, which was lower than those in plants at other light intensities. Therefore, it seems that the relatively high light intensity acted as a stressor for Ardisia plants.

  • PDF

The Effect of Mixed Cultivation Using Companion Plants on the Growth and Quality of Cherry Tomatoes

  • Lee, Byoung-Kwon;Yun, Hyung Kwon;Hong, In-Kyoung;Jung, Young-Bin;Lee, Sang-Mi
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.311-327
    • /
    • 2021
  • Background and objective: Recent urban agriculture meets the needs of urban residents that safety and avoids using chemical pesticides. This study was conducted to identify various factors of companion planting affecting the growth of cherry tomatoes, which will promoting urban agriculture by improving socioeconomic satisfaction with gardening activities through quality. Methods: Four types of companion plants such as marigold, zinnia, spearmint and basil, that have a companion effect with growth, sugar content, and vitamin C content. We obtained the mean and standard deviation and tested the significance at a 95% confidence level (p < .05) with Duncan's multiple range test after one way ANOVA and MANOVA. Results: Compared to monoculture of cherry tomatoes, the plant growth in the treatment plots with companion planting showed a significant increase overall(p < .05), but there wasn't interaction effect among companion plants, planting ratio and type. As for the absorption of inorganic components, the companion planting showed better absorption than monoculture of cherry tomatoes, as favorable growth, and there was an interaction effect among the individual factors. The sugar content was higher than the standard sugar content of 5.8 brix in both the treatment plots at the control, and vitamin C content was higher than the control at 26.27mg/100g in all treatment plots, but there wasn't statistically significant difference. The soil pH in the cultivation plot ranges from 5.5 to 9.0 and was weakly alkaline in all treatment plots except zinnia, showing low contents of phosphoric acid, exchageable potassium, calcium and magnesium. Conclusion: This study was conducted to analyze various factors such as the growth of cherry tomatoes, contents of inorganic components, sugar content and vitamin C content of fruits, and soil analysis according to companion plants, planting type, and planting ratio. We will study sugar content by measuring the change in growth every phase of fruits.

Growth and Development of Commelina benghalensis L. from Four Seed Types (Commelina benghalensis L.의 생장 연구)

  • Kim, Sang-Yeol
    • Korean Journal of Weed Science
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 1998
  • The experiment was conducted to study the growth, developmental pattern, and seed production of Commelina benghalensis L. grown from four seed types; large and small aerial seeds, and large and small underground seeds. Plants from the four seed types differed in growth rate. Based on dry weight and leaf area, plants from large underground seeds emerged and grew faster in the first 2-4 weeks after seeding(WAS) but plants from small aerial seeds grew faster during the 4-6 WAS; thereafter, there was no significant difference in growth rate among plants from the four seed types. Based on seed production, plants from large aerial seed produced more seeds(1473) than those from small seeds(1006). Small aerial types represented 75-77% of the total seed production, large aerial seed 21-23%; only 2-4% were underground seeds. The results suggest that the plants from large underground seeds might have better competitive ability Than those of small aerial seeds during the early growth stage due to faster germination and higher dry matter production.

  • PDF

Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

  • Park, Yong-Soon;Park, Kyungseok;Kloepper, Joseph W.;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.310-315
    • /
    • 2015
  • Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

Effect of Slit Ventilation System in Indoor Container on Growth and Root Activation of Davallia mariesii and Hedera rhombea (실내용기 슬릿환기 시스템이 자생 넉줄고사리와 송악의 생육과 뿌리활성화에 미치는 영향)

  • Ju, Jin-Hee;Bang, Kwang-Ja
    • KIEAE Journal
    • /
    • v.8 no.2
    • /
    • pp.59-64
    • /
    • 2008
  • This research was performed to activate various new technology for indoor container, and attempt to a desirable planting environment of indoor plant by verify effect that indoor container slit ventilation system gets in growth and root activation of Korea Native Plants. Main result is as following. 1. Davallia mariesii, typical epiphyte fern, was appeared that growth of top and root activation was helped by slit ventilation system in indoor container and were very positive in rhizome development specially. 2. Hedera rhombea was helped growth of top by slit ventilation system, and specially, effect of plant height and number of shoot. Also, this slit system was positive in root activation. So, this indoor container appeared by thing which is very desirable in climbing plants as well as epiphyte plants. According to result that see effect getting in growth and root activation of Davallia mariesii and Hedera rhombea for indoor container slit ventilation system, Growth of top was different in plant but root activation was developed.

Optimization of Finite Element Retina by GA for Plant Growth Neuro Modeling

  • Murase, H.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-29
    • /
    • 2000
  • The development of bio-response feedback control system known as the speaking plant approach has been a challenging task for plant production engineers and scientists. In order to achieve the aim of developing such a bio-response feedback control system, the primary concern should be to develop a practical non-invasive technique for monitoring plant growth. Those who are skilled in raising plants can sense whether their plants are under adequate water conditions or not, for example, by merely observing minor color and tone changes before the plants wilt. Consequently, using machine vision, it may be possible to recognize changes in indices that describe plant conditions based on the appearance of growing plants. The interpretation of image information of plants may be based on image features extracted from the original pictorial image. In this study, the performance of a finite element retina was optimized by a genetic algorithm. The optimized finite element retina was evaluated based on the performance of neural plant growth monitor that requires input data given by the finite element retina.

  • PDF

Chlorophyll Fluorescence and Growth Response of Three South Korea Native Fern Species under In-door Light Intensity

  • Kyungtae Park;Bo Kook Jang;Cheol Hee Lee;Sang Yeob Lee;Ju Sung Cho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.63-63
    • /
    • 2020
  • This study investigated the growth of native ferns under indoor light intensities to identify the introduction possibility as in-door ornamental plants. Three evergreen perennial fern species used in this experiment were Coniogramme japonica (Thunb.) Diels, Woodwardia japonica (L. f.) Sm., and Cyclosorus acuminatus (Houtt.) Nakai ex H. Itô. The light intensities were adjusted to 10, 50, 100 and 200 PPFD (µmol·m-2·s-1) based on the measurement of the various indoor light quantities. The experiment was conducted for a total of 8 weeks, and the light period (12/12h), temperature (25±1℃), and humidity (55±3%) were maintained during the experiment. The control plant group was grown in glass greenhouse for the same period. As the result of the study, in door C. japonica showed better growth under light intensities of 100, 200 PPFD. However, withering of the plants were observed under all light intensities except the control, which causes an ornamental value decrease. This seems to be related to the increase of DIo/RC value in chlorophyll fluorescence parameters. In the W. japonica growth data, the plant height was not significantly different from the control but, the leaf number decreased more than a two-fold. Also, the formed leaves turned brown and showed a poor growth and SPAD value at 200 PPFD had decreased significantly. Growth data of C. acuminatus was not significantly different with the control at all light intensities however, withering was observed at 100 and 200 PPFD. In chlorophyll fluorescence parameters, significant decrease in Pi_Abs and increase in DIo/RC value at 200 PPFD impose that stress caused by the intense light might be the reason of the withering of the plants.

  • PDF

Suppression of the ER-Localized AAA ATPase NgCDC48 Inhibits Tobacco Growth and Development

  • Bae, Hansol;Choi, Soo Min;Yang, Seong Wook;Pai, Hyun-Sook;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.57-65
    • /
    • 2009
  • CDC48 is a member of the AAA ATPase superfamily. Yeast CDC48 and its mammalian homolog p97 are implicated in diverse cellular processes, including mitosis, membrane fusion, and ubiquitin-dependent protein degradation. However, the cellular functions of plant CDC48 proteins are largely unknown. In the present study, we performed virus-induced gene silencing (VIGS) screening and found that silencing of a gene encoding a tobacco CDC48 homolog, NgCDC48, resulted in severe abnormalities in leaf and shoot development in tobacco. Furthermore, transgenic tobacco plants (35S:anti-NgCDC48), in which the NgCDC48 gene was suppressed using the antisense RNA method, exhibited severely aberrant development of both vegetative and reproductive organs, resulting in arrested shoot and leaf growth and sterile flowers. Approximately 57-83% of 35S:anti-NgCDC48 plants failed to develop mature organs and died at early stage of development. Scanning electron microscopy showed that both adaxial and abaxial epidermal pavement cells in antisense transgenic leaves were significantly smaller and more numerous than those in wild type leaves. These results indicate that NgCDC48 is critically involved in cell growth and development of tobacco plants. An in vivo targeting experiment revealed that NgCDC48 resides in the endoplasmic reticulum (ER) in tobacco protoplasts. We consider the tantalizing possibility that CDC48-mediated degradation of an as-yet unidentified protein(s) in the ER might be a critical step for cell growth and expansion in tobacco leaves.

Influence of Commercial Antibiotics on Biocontrol of Soft Rot and Plant Growth Promotion in Chinese Cabbages by Bacillus vallismortis EXTN-1 and BS07M

  • Sang, Mee Kyung;Dutta, Swarnalee;Park, Kyungseok
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2015
  • We investigated influence of three commercial antibiotics viz., oxolinic acid, streptomycin, and validamycin A, on biocontrol and plant growth promoting activities of Bacillus vallismortis EXTN-1 and BS07M in Chinese cabbage. Plants were pre-drenched with these strains followed by antibiotics application at recommended and ten-fold diluted concentration to test the effect on biocontrol ability against soft rot caused by Pectobacterium carotovorum SCC1. The viability of the two biocontrol strains and bacterial pathogen SCC1 was significantly reduced by oxolinic acid and streptomycin in vitro assay, but not by validamycin A. In plant trials, strains EXTN-1 and BS07M controlled soft rot in Chinese cabbage, and there was a significant difference in disease severity when the antibiotics were applied to the plants drenched with the two biocontrol agents. Additional foliar applications of oxolinic acid and streptomycin reduced the disease irrespective of pre-drench treatment of the PGPRs. However, when the plants were pre-drenched with EXTN-1 followed by spray of validamycin A at recommended concentration, soft rot significantly reduced compared to untreated control. Similarly, strains EXTN-1 and BS07M significantly enhanced plant growth, but it did not show synergistic effect with additional spray of antibiotics. Populations of the EXTN-1 or BS07M in the rhizosphere of plants sprayed with antibiotics were significantly affected as compared to control. Taken together, our results suggest that the three antibiotics used for soft rot control in Chinese cabbage could affect bacterial mediated biocontrol and plant growth promoting activities. Therefore, combined treatment of the PGPRs and the commercial antibiotics should be carefully applied to sustain environmental friendly disease management.

Transgenic Expression of MsHsp23 Confers Enhanced Tolerance to Abiotic Stresses in Tall Fescue

  • Lee, Ki-Won;Choi, Gi-Jun;Kim, Ki-Yong;Ji, Hee-Jung;Park, Hyung-Soo;Kim, Yong-Goo;Lee, Byung-Hyun;Lee, Sang-Hoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.818-823
    • /
    • 2012
  • Tall fescue (Festuca arundinacea Schreb.) is an important cool season forage plant that is not well suited to extreme heat, salts, or heavy metals. To develop transgenic tall fescue plants with enhanced tolerance to abiotic stress, we introduced an alfalfa Hsp23 gene expression vector construct through Agrobacterium-mediated transformation. Integration and expression of the transgene were confirmed by polymerase chain reaction, northern blot, and western blot analyses. Under normal growth conditions, there was no significant difference in the growth of the transgenic plants and the non-transgenic controls. However, when exposed to various stresses such as salt or arsenic, transgenic plants showed a significantly lower accumulation of hydrogen peroxide and thiobarbituric acid reactive substances than control plants. The reduced accumulation of thiobarbituric acid reactive substances indicates that the transgenic plants possessed a more efficient reactive oxygen species-scavenging system. We speculate that the high levels of MsHsp23 proteins in the transgenic plants protect leaves from oxidative damage through chaperon and antioxidant activities. These results suggest that MsHsp23 confers abiotic stress tolerance in transgenic tall fescue and may be useful in developing stress tolerance in other crops.