• Title/Summary/Keyword: Planting model

Search Result 161, Processing Time 0.028 seconds

The Development of Ecological Planting Model for the Make Up of Coastal Windbreak Forest on Suncheon Bay in Suncheon-si, Korea (순천만 해안방풍림 조성을 위한 생태학적 식재모델 개발)

  • Kim, Do-Gyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.89-104
    • /
    • 2011
  • This study was carried out to the development of ecological planting model to make up of coastal windbreak forest on the Suncheon-bay in Sucheon-si, Korea. Make up of coastal windbreak forest in this site was needed for appropriate bioresource, biodiversity and ecological structure, and for conservation of the eco-tour resource and protection of human life and property by the unforeseen disaster from the coast. Based on the plant-social principle, the planting model of windbreak forest was developed to facilitate growth of trees, considering planting locations. The ecological planting model for the coastal windbreak was composed of warm temperate evergreen and windbreak forest which is spreading around the inland area in Korea. The horizontal forest style was composed of forest edge community and inner forest community, and the vertical forest style was composed of upper, middle, low and ground planting class. The target of the present model was quasi-natural forest, and the species of tree were selected based on the adaptability to surroundings depending on a goal to create a forest and forest style. To achieve both functions of wind break forest and visual effect in short period of time, small trees and seedlings were planted with high-density of 40,000/ha in an expectation of easy natural maintenance in the future. The significance of the present study is a suggestion for a guideline to create ecological coastal windbreak forest in the Suncheon-bay in which the harmony of human life and the ecological conservation is of great importance. Also, the ecological coastal windbreak forest model should be developed further through the long term monitoring after construction of forest.

Suggestions for Multi-Layer Planting Model in Seoul Area Based on a Cluster Analysis and Interspecific Association (식생 군집분석과 종간친화력 분석을 통한 서울형 다층구조 식재모델 제안)

  • Kim, Min-Kyung;Sim, Woo-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.106-127
    • /
    • 2010
  • Although multi-layer planting methods are more widely used as a method for clustered planting and environmental programs such as plant remediation, difficulties have been faced in applying those to planting design. This study develops a basic planting model that can be applied to multi-layer planting in basis on an analysis of forest structures in the Seoul area. An optimal number of clusters was determined through the ISA (Indicator Species Analysis), and 7 basic clusters were found through a cluster analysis by using PC ORD 4.0 software specifically developed for ecological analysis. The 7 basic clusters include the following communities: the Quercus acutissima Community, Sorbus alnifolia-Quercus mongolica Community, Pinus rigida-Pinus densifiora Community, Rododendron mucronulatum var. mucronulatum-Quercus mongolica Community, Juniperus rigida-Quercus mongolica Community, Rododendron mucronulatum var. mucronulatum-Pinus densiflora Community, and Rododendron sclippenbachii-Quercus mongolica Community. The study also selected 57 species with at least a 10% frequency among the plant species existing in the Seoul area and suggested both a companion species and available similar alternative species by conducting an additional interspecific association analysis. This study may help to enhance usefulness of the model in architectural planting design. In addition, the two results named above were synthesized to develop a multi-layer planting model that can be utilized in landscape planting design by selecting similar alternative species through the interspecific association analysis, which includes 7 clusters of natural plants. The multi-layer planting model can be widely applied to design planting because the model has an average target cover range based on the average value of a transformed likelihood.

Vegetation Restoration Model of Pinus thunbergii in Urban Areas (도시지역 곰솔림의 식생복원모델)

  • Kim, Seok-Kyu
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.151-162
    • /
    • 2011
  • The purpose of this study is suggest to restoration model of Pinus thunbergii in Saha-gu, Busan Metropolitan City. The result of this study is summarized as follows; As the results of this study, vegetation restoration model is presented by separating community planting and edge planting. The community planting species of tree layer were Pinus thunbergii and Quercus acutissima and Quercus dentata and Quercus serrata and Quercus alienna and Quercus variabilis. The community planting species of subtree layer were Platycarya strobilacea and Prunus sargentii and Styrax japonica and Eurya japonica and Morus bombycis. The community planting species of shrub layer are Ulmus pavifolia and Ulmus davidiana and Lindera obtusiloba and Elaeagnus macrophylla and Mallotus japonicus and Ligustrum obtusifolium and Sorbus alnifolia and Rhus trichocarpa and Zanthoxylum schinifolium and Rosa wichuraiana and Rhus chinensis and Viburnum erosum and Rhododendron mucronulatum and Rhododendron yedoense and Indigofera pseudotinctoria. And the planting species of edge vegetation are Japanese Angelica and Symplocos chinensis and Pittosporum tobira and Lespedeza maximowiczii and Lespedeza bicolor and Rubus coreanus and Rubus idaeus and Vitis thunbergii and Ampelopsis brevipedunculata and Rosa multiflora. Considering the population of individuals up to layers in each $400m^2$ area, it was composed of 24 in tree layer, 35 in subtree layer, 410 in shrub layer and 34% herb layer in the Pinus thunbergii community. And the average of breast-high area and canopy area was $10,852cm^2$ in tree layer, in subtree layer $1,546cm^2$, in shrub layer $1,158,660cm^2$. The shortest distance between trees was calculated as 2.0m in tree layer, 1.9m in subtree layer.

Effects of Windbreak Planting on Crop Productivity for Agroforestry Practices in a Semi-Arid Region

  • Jo, Hyun-Kil;Park, Hye-Mi
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.348-354
    • /
    • 2017
  • Agroforestry has been practiced in arid and semi-arid regions for the purposes of preventing desertification and to increase income for locals. However, the intended effects of such practices have been limited due to strong winds and aridity. This study undertook multi-year monitoring of the productivity of income crops associated with windbreak planting in a semi-arid region of Mongolia, and explored strategies of windbreak planning to enhance the multi-purpose effects of agroforestry practices. The tree crown density of windbreak planting was on average 40% in one year after planting and 65% 2-3 years after, and thereby windspeeds were reduced by about 30% and 54%, respectively. Average windspeed reductions at leeward distances from the windbreak planting were approximately 60% within 3H (H=tree height), 50% at 5H, and 42% at 7-9H, presenting a pattern in which the farther the distance the less the reduction in windspeeds. The windbreak planting increased crop productivity by up to 6.8 times, compared to the productivity absent of windbreaks. Increases in the crown density as stated above resulted in increases of crop productivity by up to 3.6 times. Based on such results, this study proposed a model of windbreak planning as a typical land-use system of border windbreak planting or alternate windbreak planting of combining trees and income crops. The model also included tree planting with a crown density of 60% and allocation of income crops within a leeward distance of 5 times the height of the trees to reduce windspeeds by about 50%. The results from this study are applicable to practicing agroforestry not only at the study site but also in other regions worldwide where strong winds and aridity are problematic.

Research on the Impact of Agricultural Mechanization Service on Wheat Planting Cost: A Case Study of Henan Province

  • Cheng, Zhang
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1127-1137
    • /
    • 2021
  • Given the different effects of agricultural mechanization on various stages of wheat planting in Henan, this article selects 78 observation samples from Henan, a major wheat-growing province. It uses different research methods (multiple linear regression, social network analysis model, multi-layer sensory nerves network) to conduct a comparative study, and the calculation results of the model show that the experimental results have a strong convergence and consistency. Agricultural mechanization services have significant effects on the three stages of wheat planting: harvesting, plowing and sowing. A higher degree of mechanized service in several stages can reduce the cost of growing wheat on family farms.

Problem Analysis and Suggestion for Improved Approaches to Ecological Planting and the Establishment of Urban Parks -A Case Study of the Nature Ecological Forest in Yeouido Park, Seoul- (도시공원 생태적 배식의 조성 단계별 문제점 고찰 및 개선방안 -서울시 여의도공원 자연생태의 숲을 사례로-)

  • Seong, Kyong-Ho;Lee, Kyong-Jae;Choi, Jin-Woo;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.2
    • /
    • pp.91-102
    • /
    • 2011
  • This study was carried out to analyze the problems on several steps of the establishment of the Nature Ecological Forest in Yeouido Park, Seoul, and also to suggest improved approaches on each step. For execution drawing, planting models and plans seemed to be uncertain, and the quantity and size of planting trees seemed to be impractical. For construction, the woody plants planted on the site were different in species and size from the planting plan. Ecological planting was somewhat limited because of the inappropriate soil properties. For management, replacement of the dead trees was not executed properly, and no management scheme was prepared after the replacement period. We suggested improved approaches for the establishment of ecological forests in urban areas as follows: for execution drawing, overstory, understory and herbaceous ground cover layers should be composed based on standard plant community structures. Trees that are available from tree markets should be specified in the planting plan. For construction, trees for planting need to be tagged to identify species and size. When tree species and size are changed, they should be checked to ensure that they are proper to the plant community model. Soil information should be collected to check that they fit the target plant community model. For management, the proper amount of trees needs to be specified in the planting plan by applying regular discount rates, especially for trees supplied from the government sector. The replacement period should be extended from two years to five years. The change of plant communities should be monitored during first five years after establishment.

Landscape Planting Design for Yeoyido Flood Plain Park in Han-river (한강 여의도지구 수변공원 식재설계)

  • 이준복
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.86-95
    • /
    • 2003
  • It had been strictly prohibited to plant in waterway according to Korea laws and regulations. It was then made possible to plant by the modification law and regulation of 10/30/1997. In 2000, the Seoul metropolis government planted in the Yeoyido flood plain park in Han river by way of showing the model case. This planting design is for the Yeoyido flood plain park along the Han river, in Seoul. The design requirements were to create a pleasant rest area, to improve the surrounding landscape, and to create diverse ecological habitats by planting within the stability of flood flow. This design emphasizes the following design requirements that has positive effect on stabilizing flood flow. First, planting suitable in a area was determined by the speed of a current of less than 0.7m/sec under various numerical value simulations. Second, plants were selected in existing trees of the present and the past Han river, as well as the questionnaire results from landscape professional engineers and professors. Shade plants were planted in the large visiting areas so as to offer pleasant shade in the summer, the ecological planting pattern was applied in the area with low speed of flood flow, so as to aid the restoration of the natural ecological environment. It was found that the foresaid planting design verified the stability of flood flow and wind by overturn limit moment calculation. It is expected that this plan would serve environmentally friendly planting plans in flood plain park.

Ecological Characteristics and Restoration Model of Vegetation in the Urban Forest (도시림 식생의 생태적 특성과 복원모델)

  • Kim, Seok-Kyu;Ju, Kyeong-Jung;Nam, Jung-Chil;Park, Seung-Burm
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.80-94
    • /
    • 2010
  • The purpose of this study is suggest to restoration model of Pinus thunbergii in Saha-gu, Busan. The result of this study is summarized as follows. As the results of this study, vegetation restoration model is presented by separating community planting and edge planting. In community planting, as a group of canopy, there are 6 species; Pinus thunbergii, Quercus acutissima, Quercus dentata, Quercus serrata, Quercus alienna, Quercus variabilis. As a group of understory, there are 5 species; Platycarya strobilacea, Prunus sargentii, Styrax japonica, Eurya japonica, Morus bombycis. Also as a group of shrub, there were 15 kinds of species; Ulmus pavifolia, Ulmus davidiana, Lindera obtusiloba, Elaeagnus macrophylla, Mallotus japonicus, Ligustrum obtusifolium, Sorbus alnifolia, Rhus trichocarpa, Zanthoxylum schinifolium, Rosa wichuraiana, Rhus chinensis, Viburnum erosum, Rhododendron mucronulatum, Rhododendron yedoense, Indigofera pseudotinctoria. And as a group of edge vegetation, there were 10 kinds of species; Japanese Angelica, Symplocos chinensis, Pittosporum tobira, Lespedeza maximowiczii, Lespedeza bicolor, Rubus coreanus, Rubus idaeus, Vitis thunbergii, Ampelopsis brevipedunculata, Rosa multiflora. Vegetation restoration models of Pinus thunbergii community were calculated the units $400m^2$ for the average populations of the woody layer is 24 in canopy layer, 35 in understory layer, 410 in shrub layer, 34% herbaceous layer ground cover. And the average of breast-high area and canopy area is $10,852cm^2$ in canopy layer, in understory layer $1,546cm^2$, in shrub layer $1,158,660cm^2$. The shortest distance between trees is calculated as 2.0m in canopy layer, 1.9m in understory layer.

ACCURATE SYNTHESIS OF SEEDLING SEPARATING-PLANTING MECHANISM OF RICE TRANSPLANTER

  • Hu, Hanxiang;Chen, Dejun;Wang, Changbing;Li, Zhenyong;Wu, Jienian;Xu, Jinda
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.284-290
    • /
    • 1993
  • In order to improve the adaptability of rice transplanter to seeding with different length when transplanting multicropping rice in south China. The seedling separating planting mechanism is resynthesized in the paper. According to the agronomy requirements of seedling's transplanting, optimum motional path of the tip point of planting needle is obtained. by applying the established kinematic model of the separating planting mechanism, the relevant software is compiled. On the basis of the features of the problem, the constrained optimization method is utilized to solve the problem with 24 restrictions. Thus, the optimum structure parameters are obtained to satisfy the path points accurately.

  • PDF

Projecting the Spatio-Temporal Change in Yield Potential of Kimchi Cabbage (Brassica campestris L. ssp. pekinensis) under Intentional Shift of Planting Date (정식일 이동에 따른 배추 잠재수량성의 시공간적 변화 전망)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.298-306
    • /
    • 2016
  • Planting date shift is one of the means of adapting to climate change in Kimchi Cabbage growers in major production areas in Korea. This study suggests a method to estimate the potential yield of Kimchi Cabbage based on daily temperature accumulation during the growth period from planting to maturity which is determined by a plant phenology model tuned to Kimchi Cabbage. The phenology model converts any changes in the thermal condition caused by the planting date shift into the heat unit accumulation during the growth period, which can be calculated from daily temperatures. The physiological maturity is estimated by applying this model to a variable development rate function depending either on growth or heading stage. The cabbage yield prediction model (Ahn et al., 2014) calculates the potential yield of summer cabbage by accumulating daily heat units for the growth period. We combined these two models and applied to the 1km resolution climate scenario (2000-2100) based on RCP8.5 for South Korea. Potential yields in the current normal year (2001-2010) and the future normal year (2011-2040, 2041-2070, and 2071-2100) were estimated for each grid cell with the planting dates of July 1, August 1, September 1, and October 1. Based on the results, we divided the whole South Korea into 810 watersheds, and devised a three - dimensional evaluation chart of the time - space - yield that enables the user to easily find the optimal planting date for a given watershed. This method is expected to be useful not only for exploring future new cultivation sites but also for developing cropping systems capable of adaptation to climate change without changing varieties in existing production areas.