• Title/Summary/Keyword: Plantar foot forces

Search Result 11, Processing Time 0.02 seconds

An Analysis of Plantar Foot Pressure Distribution and COP Trajectory Path in Lifting Posture (들기 자세에서 족저의 압력 분포와 압력중심 이동거리의 분석)

  • Lee, Myoung-Hee;Han, Jin-Tae;Bae, Sung-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.1
    • /
    • pp.25-29
    • /
    • 2009
  • The purpose of this study was to investigate the effect of two different lifting posture on the plantar foot pressure, force and COP(center of pressure) trajectory path during object lifting. Fourteen healthy adults who had no musculoskeletal disorders were instructed to lift with two postures(stoop and squat) and two object weights(empty box and 10 kg box). Plantar foot pressures, forces and COP trajectory path were recorded by the F-mat system(Tekscan, Boston, USA) during object lifting with barefoot. Plantar foot surface was defined as seven regions for pressure measurement; two toe regions, three forefoot regions, one midfoot region and one heel region. Paired t-test was used to compare the outcomes of peak pressure and maximum force with different two lifting postures and two object weights. Plantar peak pressure and maximum force under hallux was significantly greater in squat posture than stoop posture during the two different boxes lifting(p<.05). During the empty box lifting, maximum force under lessor toes was significantly less and plantar peak pressure under second metatarsal region was significantly greater in squat than stoop(p<.05). Maximum force under heel was significantly less in squat than stoop posture during 10kg box lifting(p<.05). Finally, COP trajectory path was significantly greater in squat than stoop(p<.05). These findings confirm that there are significantly change in the structure and function of the foot during the object lifting with different posture. Future studies should focus on the contribution of both structural and functional change to the development of common foot problems in adults.

Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system (족저압력분포 측정장비를 이용한 골프 스윙시 족저압 분석)

  • Lee, Dong-Ki;Lee, Joong-Sook;Lee, Bom-Jin;Lee, Hun-Sik;Kim, Young-Jae;Park, Seung-Bum;Joo, Jong-Peel
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 2005
  • D. K. LEE, J. S. LEE, B. J. LEE, H. S. LEE, Y. J. KIM, S. B. PARK, J. P. JOO. Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, pp. 75-89, 2005. In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Address acting, forces concentrated in rare foot regions and lateral foot of right foot. Back swing top acting, relatively high force occurred in medial forefoot region of left foot and forefoot region of right foot. Impact acting, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the lateral region and rarefoot region of left foot. 2. Forces were increased in address of right foot with clubs length increased. All clubs, back swing top acting, high force value observed in the lateral forefoot region of right foot. All clubs, in impact, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the rarefoot region in driver and lateral foot region in iron on left foot. 3. Right foot forces distribution were increased in address, back swing top and left foot force distribution were increased in impact, finnish

Analysis of Plantar Foot Pressure During Golf Swing Motion of Pro & Amateur Golfer (프로와 아마추어 골퍼의 골프스윙 동작시 족저압력 비교 분석)

  • Lee, Joong-Sook;Lee, Dong-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.41-55
    • /
    • 2005
  • In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Regional change of force acting, in address, is evenly distributed on both feet. In back swing top, 76% on right foot, 75% on left foot as impact, and 86% on left foot as finish. As regional force acting, in address, pros get high marks on rare and inside of right foot and rare and outside for amateurs. In back swing top, it is higher as fore and inside of left foot, pros as rare part of right foot and amateurs as forefoot. In impact, it is higher for pros and amateurs in outside and rare part of left foot and fore and inside of right foot. In finish, for both pros and amateurs, it is higher for outside and rare parts of left foot. 2. For each club, forces are evenly distributed on both feet in address. In back swing top, the shorter a club is, the higher impact on right foot and the higher finish distribution on left foot. For all the clubs used, in each region, pros get higher on rare and inside of right foot and as amateurs on rare and outside of left foot in address. In back swing top, for all clubs, pros get higher on rare and outside of right foot as fore and outside for amateurs. In impact acting, for all clubs, rare and outside of left foot get higher. In finish, force concentrates on rarefoot. 3. On both feet force, right foot forces of amateurs is higher than those of pros in back swing top. In impact and finish, pros get higher on left foot.

Development of the foot track system for the evaluation of foot plantar surface pressure distribution (족저 압력분포 평가를 위한 Foot Track System의 개발)

  • 이기훈;정민근;김태복
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.23-33
    • /
    • 1992
  • The distribution of the pressure between the sole of a feet and a supporting surface can reveal the information about the structure and fonction of the foot and the posural control of the whole body. In particular, the measurement of the vertical contact forces between the plantar surface of the foot and the shoe insole is of great importance to reveal the loading distributio patterns incurred from a particular shoe midsole design. In order to investigate the plantar surface pressure distribution, an insole-type sensor with a piezoelectric material is developed and tested. The present paper describes a new method to completely reduce both the shear force and pyroelectric effects that are normally caused from piezoelectric materials.

  • PDF

A study on the ground reaction forces and plantar pressure variables in different safety shoes and applying insole during walking (안전화 형태와 Insole 착용 유무에 따른 보행동작시 하지부위에 대한 지면반발력과 압력분포 부하)

  • Kim, Jung-Jin;Choi, Sang-Bock;Cha, Sang-Eun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.2
    • /
    • pp.131-143
    • /
    • 2007
  • The purpose of this study was to compare the ground reaction forces and plantar pressure variables among three different safety shoes (Type 1: ergonomically designed and high quality shoes, 2: curved and cushioned safety hoes, and 3: regular safety shoes) and to find the effect of insole during walking. Ten healthy subjects were recruited for this study. The ground reaction force was measured using a 3 dimensional motion analysis system. Plantar pressures were measured Pedar Mobile foot pressure scan system. The ground reaction force variables were not significantly different among three different shoe types and insole conditions. After insertion insole, plantar pressure distributions were improved. These results suggest that the type 1 safety shoes was superior than other safety shoes in the statistics, and applying insole could be a possible method to prevent fatigue of lower extremity and musculoskeletal disorders. Further studies are needed to find the effect of ergonomically designed safety shoes design and insole on practical value prevention of musculoskeletal disorder, fatigue and satisfaction of workers.

The Study of Plantar Foot Pressure Distribution during Obstacle Crossing with Different Height in Normal Young Adults (보행 시 장애물 높이에 따른 정상 성인의 족저압 분포 연구)

  • Han, Jin-Tae;Lee, Myung-Hee;Kim, Kyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • The purpose of this study was to investigate the effect of different obstacle heights on the plantar foot pressure during obstacle crossing. Sixteen healthy adults who had no musculoskeletal disorders were instructed to perform unobstructed level walking and to step over obstacles corto 10cm, 20cm, 30cm. Plantar foot forces and pressures were recorded by the Footmat system(Tekscan, Boston, USA) during level and obstacle walking with barefoot. Plantar foot surface was defined as seven regions for pressure measurement; two toe regions, three forefoot regions, one midfoot region, one heel region. One-way ANOVA was used to compare each region data of foot according to various heights. The results indicated that there are significant differences on peak pressure and maximal forces regarding each region at stance phase. As height of obstacle became high, the pathway of COP had a tendency to be short and abducted. Plantar pressure of foot could be changed by obstacle height and these findings demonstrated that obstacle with different height have an effect on structure and function of the foot.

Immediate Effects of Low-Dye Taping on the Ankle Motion and Ground Reaction Forces in the Pronated Rear-Foot During Gait

  • Kim, Sung-shin;Chung, Jae-yeop
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2016
  • Background: Increased foot pronation causes biomedchanical changes at the lower limbs, which may result in musculoskeletal injuries at the proximal joints. Pronation rear-foot leads to plantar fasciitis, Achilles tendonitis, and posterior tibial tendonitis pathologically. According to the recent meta-analysis, They showed that therapeutic adhesive taping is more effective than foot orthoses and motion control footwear, low-Dye (LD) taping has become the most popular method used by physiotherapists. Objects: The purpose of this study was to determine the immediate effects of LD taping results in different ankle motion and ground reaction force (GRF) as before and after applied LD taping on pronated rear-foot during gait. Methods: Twenty-four participants were recruited for this study. The gait data were recorded using an 8-camera motion capture system and two force platforms. At first, the experiments were carried out that participants walked barefoot without LD taping. And then they walked both feet was applied LD taping. Results: The ankle inversion minimum was significantly greater after LD taping than before LD taping (p=.04); however, in the GRF, there were no significant differences in the inversion maximum or total motion of the stance phase (p=.33, p=.07), or in the vertical (p=.33), posterior (p=.22), and lateral (p=.14) peak forces. Conclusion: The application of taping to pronation rear-foot assists in increased ankle inversion.

Effects of Joint Mobilization on Foot Pressure, Ankle Moment, and Vertical Ground Reaction Force in Subjects with Ankle Instability

  • Yoon, Na Mi;Seo, Yeon Soon;Kang, Yang-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.153-159
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effects of joint mobilization on foot pressure, ankle moment, and vertical ground reaction force in subjects with ankle instability. Method: Twenty male subjects (age, $25.38{\pm}3.62yr$; height, $170.92{\pm}5.41cm$; weight, $60.74{\pm}9.63kg$; body mass index (BMI), $19.20{\pm}1.67kg/m^2$) participated and underwent ankle joint mobilization. Weight-bearing distribution, ankle dorsi/plantar flexion moment, and vertical ground reaction force were measured using a GPS 400 and a VICON Motion System (Oxford, UK), and subsequently analyzed. SPSS 20.0 for Windows was used for data processing and paired t-tests were used to compare pre- and post-mobilization measurements. The significance level was set at ${\alpha}$ = .05. Results: The results indicated changes in weight-bearing, ankle dorsi/plantar flexion moment, and vertical ground reaction force. The findings showed changes in weight-bearing distribution on the left (pre $29.51{\pm}6.31kg$, post $29.57{\pm}5.02kg$) and right foot (pre $32.40{\pm}6.30kg$, post $31.18{\pm}5.47kg$). There were significant differences in dorsi/plantar flexion moment (p < .01), and there were significant increases in vertical ground reaction forces at initial stance (Fz1) and terminal stance (Fz2, p < .05). Additionally, there was a significant reduction in vertical ground reaction force at midstance (Fz2, p < .001). Conclusion: Joint mobilization appears to alter weight-bearing distribution in subjects with ankle instability, with resultant improvements in stability.

Gait Analysis on Unexpected Missing Foot Steps (헛디딤 보행특성 분석)

  • Hwang, Sun-Hong;Ryu, Ki-Hong;Keum, Young-Kwang;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.85-92
    • /
    • 2007
  • In the present study, three-dimensional motion analyses were performed to determine biomechanics of the lower extremity in unexpected missing foot steps for ten healthy young volunteers. In unexpected missing foot steps, the whole plantar surface of the foot or the heel contacted to the ground. A rapid ankle dorsiflexion was found right after missing foot steps and an increased plantarflexion moment was noted during loading response. After the unexpected situation, the breaking force increased rapidly. At this time, both tibialis anterior and soleus were simultaneously activated. Moreover, the range of motion at ankle, knee and hip significantly decreased during stance. In pre-swing, rectus femoris and biceps femoris prevented the collapse of the lower limbs. During late stance, propulsive forces decreased and thus, both plantarflexion moment and power generation were significantly reduced. On the opposite side, hip extension and pelvic upward motion during terminal swing were significant. Due to the shortened pre-swing, the energy generation at the ankle to push sufficiently off the ground was greatly reduced. This preliminary study would be helpful to understand the biomechanics of unexpected dynamic perturbations and valuable to prevent frequent falling of the elderly and patients with gait disorders.

In-shoe Loads during Treadmill Running (트레드밀 달리기시 신발 내부의 부하에 관한 연구)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.105-119
    • /
    • 2004
  • To enhance our understanding of the loads on the foot during treadmill running, we have used a pressure-sensitive insole system to determine pressure, rate of loading and impulse distributions on the plantar surface during treadmill running, both in minimally cushioned footwear and in cushioned shoes. This report includes pressure, rate of loading, impulse and contact time data from a study of ten subjects running on a treadmill at 4.0m/s. Among heel-toe runners, the highest peak pressures and highest rates of loading were observed under the centre of the heel and in the medial forefoot. The arch regions were only lightly loaded. Contact time was greater in the forefoot than in the heel. Two-thirds of the impulse recorded during the step was the result of forces applied through the forefoot, mostly in the region of the metatarsal heads. The distribution of loads in the shoe suggests that the load distributing properties of the cushioning system are most important in the centre of the heel, under the metatarsal heads and great toe. Shock attenuation is primarily required under the centre of the heel and to lesser extent under the metatarsal heads. Some energy dissipation may be desirable in the heel region because it causes shock to be absorbed with less force. All the 'propulsive' effort is applied through the forefoot. Therefore, this region should as resilient as possible.