• Title/Summary/Keyword: Plant-scale

Search Result 1,591, Processing Time 0.028 seconds

CO2 dry-ice cleaning for the removal of air preheater plugging in coal-fired power plant. (석탄 화력발전소의 공기예열기 막힘 제거를 위한 CO2 드라이아이스 세정)

  • Ju, Saerom;Kim, Gyeong-Min;Kim, Do-Jung;Kim, Dong-Won
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.204-206
    • /
    • 2014
  • 석탄 화력발전소에는 연소가스의 질소산화물(NOx) 저감을 위한 SCR(selective catalytic reduction)설비가 운전되고 있으며, SCR은 환원제인 암모니아($NH_3$)를 이용하여 연소가스 내에 질소산화물을 물과 질소로 분해하는 역할을 한다. 그러나, 연소가스 중의 일부 삼산화황($SO_3$)과 미반응 암모니아가 결합하여 황산암모늄염(Ammonium bisulfate; $NH_4HSO_4$)을 생성하며, 이는 후단 APH(air preheater)의 열소자에 점착된 후 분진들과 함께 성장하여 막힘을 야기한다. 막힘이 발생된 APH는 연소가스의 흐름을 방해하기 때문에 차압을 증가시키며, 이는 발전효율의 감소뿐만 아니라 급전정지를 초래한다. 이를 해결하기 위하여 $CO_2$ 드라이아이스 세정 방법을 적용하였으며, pilot-scale plant에서 실험을 수행하였다. 또한, 드라이아이스 공정변수인 분사압력과 분사시간을 제어하여 pilot-scale plant의 APH 열소자 표면에 생성되어있는 오염물질들의 제거효율을 관찰한 결과 95 %의 높은 제거효율을 보였다.

  • PDF

Artificial Neural Network Modeling and Prediction Based on Hydraulic Characteristics in a Full-scale Wastewater Treatment Plant (실규모 하수처리공정에서 동력학적 동특성에 기반한 인공지능 모델링 및 예측기법)

  • Kim, Min-Han;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2009
  • The established mathematical modeling methods have limitation to know the hydraulic characteristics at the wastewater treatment plant which are complex and nonlinear systems. So, an artificial neural network (ANN) model based on hydraulic characteristics is applied for modeling wastewater quality of a full-scale wastewater treatment plant using DNR (Daewoo nutrient removal) process. ANN was trained using data which are influents (TSS, BOD, COD, TN, TP) and effluents (COD, TN, TP) components in a year, and predicted the effluent results based on the training. To raise the efficiency of prediction, inputs of ANN are added the influent and effluent information that are in yesterday and the day before yesterday. The results of training data tend to have high accuracy between real value and predicted value, but test data tend to have lower accuracy. However, the more hydraulic characteristics are considered, the results become more accuracy.

Efficiency Verification of Small-Scale Sewage Treatment Plant Using Discussed Vinyl as Biofilm Media (폐비닐 재활용 여재를 이용한 소규모 오수종말처리장의 효율검증)

  • Rim, Jay-Myoung;Kim, Byoung-Ug;Koo, Bon-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.1-6
    • /
    • 1998
  • This study was conducted to use disused vinyl as biofilm for biological sewage treatment. Efficiency verification was performed on laboratory and on-site plant. In laboratory study, total biochemical oxygen demand(TBOD) removal rate was ranged 94.8~97 % in each hydraulic retention tim(HRT), 12, 16, 20, 24 hr, respectively. At that time, filling rate was 50 %. And effluent TBOD concentration was low ranged 3.64~6.28 mg/L. In on-site plant, TBOD removal rate was ranged 88.2~96.8 % and effluent TBOD concentration was 4.8~17.7mg/L. This concentration was lower than disign effluent concentration, 30mg/L. Total kjeldhal nitrogen(TKN) removal efficiency was ranged 56.8~90.9%. This was resulted higher than Lab. scale treatment efficiency.

  • PDF

Anaerobic Digestion of Agricultural Wastes and 1ts Benefits (농산폐기물(農産廢棄物)의 메탄발효(醱酵)와 그 이점(利點))

  • Park, Young-Dae
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.3-17
    • /
    • 1984
  • Anaerobic digestion has recently attracted all over the world and Korea also shows no exception. The major benefits of anaerobic digestion are energy production, water pollution control, pathogen reduction and effective manure production. In Korea it was recognized in late sixties that there was a positive need to find alternative energy for farmers household. The main traditional energy sources in rural area were crop residues and forestry products. Therefore Office of Rural Development through its Rural Guidance Bureau disseminated about 29,000 household biogas units from 1969 to 1975 to provide cooking fuel for farmers household and to improve the mode of farmers living standards. The units were welcomed by farmers at that time. Now, however, most of them are not using due to a number of reasons associated with cold winter and some techno-economical problems (in those day, fossil fuel was quite expensive to compare with other prices and since then farmers income was quickly increased). The author studied on bag type household biogas plant to solve some technical problems of existing household biogas plants, but this also has little appeal for the farmers. From 1977 author studied on village scale biogas plant with two pilot plants. From the viewpoint of energy production, COD removal, kill rate of pathogen and fertilizer value, the results obtained from the experiments were quite promising, but the construction cost of the village scale biogas plant was too high for the farmers in Korea. To find most suitable biogas plant for farmers in Korea through the simplifying the biogas digester, the author developed batch-load biogas plant. By feeding coarse crop residues and manures, total solids concentrations of the batch-load biogas plant are about 28 percent which is much higher than continous digester of 5-8 percent. The batch-load biogas plant was welcomed by many farmers in Korea when it was reported on TV and newspapers. The plant was disseminated 154 units in 1982, 766 units in 1983 and 812 units in 1984 as a promissing project. Besides these biogas plant experiments, studies were also conducted 1) to determine gas production rate with agricultural wastes, 2) to evaluate the effect of loading rate, dilution, retention time on biogas production, 3) to project the amount of potencial energy from agricultural wastes.

  • PDF

A Study on CNN based Production Yield Prediction Algorithm for Increasing Process Efficiency of Biogas Plant

  • Shin, Jaekwon;Kim, Jintae;Lee, Beomhee;Lee, Junghoon;Lee, Jisung;Jeong, Seongyeob;Chang, Soonwoong
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, as the demand for limited resources continues to rise and problems of resource depletion rise worldwide, the importance of renewable energy is gradually increasing. In order to solve these problems, various methods such as energy conservation and alternative energy development have been suggested, and biogas, which can utilize the gas produced from biomass as fuel, is also receiving attention as the next generation of innovative renewable energy. New and renewable energy using biogas is an energy production method that is expected to be possible in large scale because it can supply energy with high efficiency in compliance with energy supply method of recycling conventional resources. In order to more efficiently produce and manage these biogas, a biogas plant has emerged. In recent years, a large number of biogas plants have been installed and operated in various locations. Organic wastes corresponding to biogas production resources in a biogas plant exist in a wide variety of types, and each of the incoming raw materials is processed in different processes. Because such a process is required, the case where the biogas plant process is inefficiently operated is continuously occurring, and the economic cost consumed for the operation of the biogas production relative to the generated biogas production is further increased. In order to solve such problems, various attempts such as process analysis and feedback based on the feedstock have been continued but it is a passive method and very limited to operate a medium/large scale biogas plant. In this paper, we propose "CNN-based production yield prediction algorithm for increasing process efficiency of biogas plant" for efficient operation of biogas plant process. Based on CNN-based production yield forecasting, which is one of the deep-leaning technologies, it enables mechanical analysis of the process operation process and provides a solution for optimal process operation due to process-related accumulated data analyzed by the automated process.

Experiments of Continuous Release of Liquid Nitrogen (액체질소의 연속 누출 실험)

  • YONG-SHIK HAN;MYUNGBAE KIM;LE-DUY NGUYEN;MINCHANG KIM;CHANGHYUN KIM;TAE-HOON KIM;KYU HYUNG DO;BYUNG-IL CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.526-534
    • /
    • 2023
  • To evaluate the risk of leakage when using liquid hydrogen, a leakage test was conducted using liquid nitrogen in an outdoor environment rather than a laboratory environment. To assume a real-scale continuous leak, liquid nitrogen was allowed to leak for 5 minutes through a pipe with a diameter of 25.4 mm at a design spill rate of 60 L/min. The measurement system consisted of devices for climate conditions, LN2 spread and vapor clouds. The main experimental results are the liquid pool radius and the concentration of vapor cloud, and the radius of the liquid pool was compared with the numerical analysis results.

A Study on plans for improving localization of process pumps for petrochemical plants (석유화학 플랜트용 프로세스 펌프의 국산화율 제고 방안에 관한 연구)

  • Cho, Won-Bae;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.5 no.3
    • /
    • pp.50-58
    • /
    • 2009
  • In this paper, the present condition for localization of process pumps and the enhancement method of the localization ratio of process pumps for refinery and chemical plant market were studied. The market of plant industry in the world has grown rapidly since 2000. However, the profit of domestic plant EPC compaies cound not have been increased as much as the market scale because they procured most of equipment from overseas. To make remarkable profit of plant EPC companies in the petrochemical industry, localization of equipments is required. Suitable equipment for localization is process pump applied API 610 standard. An purchased amount of pumps from overseas by domestic plant EPC companies in the last two years were 230 billion won. If process pumps are localized then an profit of plant EPC project will increase.

  • PDF

SPSF : Smart Plant Safety Framework based on Reliable-Secure USN (차세대 USN기반의 스마트 플랜트안전 프레임워크 개발)

  • Jung, Ji-Eun;Song, Byung-Hun;Lee, Hyung-Su
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.3
    • /
    • pp.102-106
    • /
    • 2010
  • Recently process industries from oil and gas procedures and mining companies to manufactures of chemicals, foods, and beverages has been exploring the USN (Ubiquitous Sensor Networks) technology to improve safety of production processes. However, to apply the USN technology in the large-scale plant industry, reliability and security issues are not fully addressed yet, and the absence of the industrial sensor networking standard causes a compatibility problem with legacy equipment and systems. Although this situation, process industry such as energy plants are looking for the secure wireless plant solution to provide detailed, accurate safety monitoring from previously hard-reach, unaccordable area. In this paper, SPSF (Smart Plant Safety Framework based on Reliable-Secure USN) is suggested to fulfill the requirements of high-risk industrial environments for highly secure, reliable data collection and plant monitoring that is resistant to interference. The SPSF consists of three main layers: 1) Smart Safety Sensing Layer, 2) Smart Safety Network Layers, 3) Plant Network System Layer.

  • PDF