• Title/Summary/Keyword: Plant-growth promotion

Search Result 332, Processing Time 0.022 seconds

Tolerance to Salt Stress by Plant Growth-Promoting Rhizobacteria on Brassica rapa var. glabra

  • Hussein, Khalid A.;Yoo, Jaehong;Joo, Jin Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.776-782
    • /
    • 2016
  • Salinity has been a threat to agriculture in some parts of the world; and recently, the threat has grown. Plant growth-promoting rhizobacteria (PGPR) may benefit plant growth, either by improving plant nutrition or producing plant growth hormones. The effects of rhizobacterial strains to attenuate the salinity stress on the germination of Chinese cabbage seeds were tested using four different concentrations of NaCl (50, 100, 150, and 200 mM). Also, PGPR strains were tested to enhance the early germination of Chinese cabbage seeds under normal conditions. Azotobacter chroococcum performed best with enhancing the radicle length of 4.0, 1.2, and 1.0 times at treatments of 50, 100, and 150 mM of NaCl, respectively. Additionally, significant differences were found in plumule length, A. chroococcum and Lactobacillus sp. showed remarkable activation either in normal or under stress conditions. Co-inoculation by three rhizobacterial strains (LAPmix) indicated synergistic effect to enhance the early germination of the seeds. The results of this study are promising for application of rhizobacterial strains that possess plant growth promoting traits to enhance the plant tolerance against salinity.

Antagonistic and growth promotion potential of endophytic bacteria of mulberry (Morus spp.)

  • Pratheesh Kumar, Punathil Meethal;Ramesh, Sushma;Thipeswamy, Thipperudraiah;Sivaprasad, Venkadara
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • Endophytes provide multifarious benefits such as promotion of plant growth and yield, suppression of phyto-pathogens, phosphate solubilising and fixation nitrogen. A study has been carried out to explore growth promotion and antifungal activities of endophytes of mulberry (Morus spp.). Endophytic bacteria were isolated from mulberry plants and studied their cultural, morphological characters, growth promotion as well as their antifungal activity against Rhizoctonia bataticola and Fusarium oxysporum , two mulberry root rot associated pathogens. Except two isolates, all bacteria were colourless and the colony size of eight isolates was small. The margin of five isolates was irregular and the consistency of three isolates was creamy, six isolates was slimy and one was mucoid. Texture of seven isolates was convex and others were flat. Eight isolates were gram positive and the rest Gram negative, five were cocci and others were bacilli (rod shaped). Four isolates were motile and all were catalase positive and only three isolates were oxidase positive. Spore staining was positive only for two isolates. The growth promotion study showed that there was significant difference in root length and seedling length. The antagonistic effect of the bacterial isolates was tested against R. bataticola showed significant (p <0.05) influence of the bacteria, days after inoculation and their interaction on the inhibition of fungal growth. The isolate En-7 completely inhibited the fungus followed by En-5 (66.67%). The bacterial isolates significantly (p <0.05) inhibited growth of F. oxysporum in PDA. The mean inhibition was higher (70.45%) in case of En-7 followed by En-8 (68.65%) and En-10 (66.44%). The study reveals that some endophytic bacteria associated with mulberry have growth promotion and antifungal activity and could be explored for promotion of mulberry growth and managing root rot disease.

The Development of Functional Food with Plant Extracts for Enhancing Growth Rate (생약추출물을 이용한 키 성장 기능성 식품 개발)

  • Ra, Jeong-Chan;Park, Hyeong-Geun;Choi, Mi-Kyung;Lee, Hang-Young;Kang, Kyung-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2004
  • It has been reported that various kinds of chinese herbs have an activity of promote growth rate in both animals and human. To investigate the growth promoting effect of the selected plants, fish and pigs were used as experimental animals. In fish, Eleutherococcus senticosus extract and Artemisia capillasis extract were found to be most effective. And these plant extracts were given to pigs. The result showed that plant extracts-fed pigs were significantly increased their body weight gain at 7.06% of average daily gain, as compared to control. The verify this results, secreted growth hormone (GH)levels and insulin-like growth factor-1 (ICF-1) levels into blood were measured. This result indicated that GH and IGF-1 levels in the blood in plant extracts-fed pigs were higher that those of control. To confirm growth promotion effect on human, we manufactured the mixture of these plant extracts, and coated this mixture onto rice, named as $Kiwoomi^{TM}$. When we administered $Kiwoomi^{TM}$ to elementary students, it was found to be effective in growth promotion. This result showed that $Kiwoomi^{TM}$-treated elementary students significantly increased their growth rate (about 2.14 times), as compared to untreated children. Taken together, it is suggested that this functional rice ($Kiwoomi^{TM}$) might be helpful for growing children without any side effects.

Induction of Systemic Resistance in Watermelon to Gummy Stem Rot by Plant Growth-Promoting Rhizobacteria

  • Lee, Yong-Hoon;Lee, Wang-Hyu;Shim, Hyeong-Kwon;Lee, Du-Ku
    • The Plant Pathology Journal
    • /
    • v.16 no.6
    • /
    • pp.312-317
    • /
    • 2000
  • The selected five plant growth-promoting rhizobacteria (PGPR) strains, WR8-3 (Pseudomonas fluorescens), WR8-6 (P. putida), WR9-9 (P. fluorescens), WR9-11 (Pseudomonas sp.), and WR9-16 (P. putida) isolated in the rhizosphere of watermelon plants were tested on their growth promotion and control effect against gummy stem rot of watermelon. Strains, WR8-3 and WR9-16 significantly increased stem length of watermelon, and there was a little increase in leaf area, fresh weight and root length when strains, WR8-3, WR9-9 and WR9-16 were treated. Generally, seed treatment was better for plant growth promotion than the soil drench, but there was no significant difference. Seed treatment and soil drench of each bacterial strain also significantly reduced the mean lesion area (MLA) by gummy stem rot, but there was no significant difference between the two treatments. At initial inoculum densities of each strain ranging from 10$^6\;to\;10^{15}$ cfu/g seed, approximately the same level of disease resistance was induced. But resistance induction was not induced at the initial inoculum density of 10$^3$ cfu/g seed. Resistance was induced by treating the strains, WR9-9, WR9-11 and WR9-16, on all of four watermelon varieties tested, and there was no significant difference in the decrease of gummy stem rot among varieties. Populations of the strains treated initially at log 9-10 cfu/g seed, followed with a rapid decrease from planting day to 1 week after planting, but the population density was maintained above log 5.0 cfu/g soil until 4 weeks after planting. Generally no or very weak in vitro antagonism was observed at the strains treated excepting WR9-11. Rifampicin-resistant bacteria which had been inoculated were not detected in the stems or leaves, which suggesting that the bacterium and the pathogens remained spatially separated during the experiment. This is the first report of rsistance induction in watermelon to gummy stem rot by PGPR strains.

  • PDF

Fungal Diversity and Plant Growth Promotion of Endophytic Fungi from Six Halophytes in Suncheon Bay

  • You, Young-Hyun;Yoon, Hyeokjun;Kang, Sang-Mo;Shin, Jae-Ho;Choo, Yeon-Sik;Lee, In-Jung;Lee, Jin-Man;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1549-1556
    • /
    • 2012
  • Endophytic fungi were isolated from roots of six halophytes in Suncheon Bay. The endophytic fungi of 35 species isolated from halophytes were identified by internal transcribed spacer (ITS) containing the ITS1, 5.8s, and ITS2 regions. All fungal strains were analyzed to diversity at the genus level. Fungal culture filtrates (FCF) of endophytic fungi were treated to Waito-c rice (WR) seedling for plant growth-promoting verification. It was confirmed that fungal strain Sj-2-2 provided plant growth promotion (PGP) to WR seedling. Then, PGP of Suaeda japonica was confirmed by treating culture filtrate of Sj-2-2. As a result, it was verified that culture filtrate of Sj-2-2 had more advanced PGP than positive control when treated to S. japonica. The secondary metabolites involved in culture filtrate of Sj-2-2 were identified by HPLC and GC-MS SIM analysis. The presence of physiologically bioactive gibberellins (GAs) and other inactive GAs in culture filtrate of Sj-2-2 was detected. The molecular analysis of sequences of Sj-2-2 showed the similarity to Penicillium sp. of 99% homology. The PGP of Sj-2-2 as well as symbiosis between endophytic fungi and halophytes growing naturally in salt marsh was confirmed. Sj-2-2 was identified as a new fungal strain producing GAs by molecular analysis of sequences. Consequently, the Sj-2-2 fungal strain was named as Penicillium sp. Sj-2-2. In this study, the diversity of endophytic fungi isolated from roots of halophytes in salt marsh and the PGP of a new gibberellin-producing fungal strain were confirmed.

Control of Colletotrichum acutatum and Plant Growth Promotion of Pepper by Antagonistic Microorganisms (길항균주를 이용한 고추탄저병균(Colletotrichum acutatum) 방제 및 식물생장촉진효과)

  • Han, Joon-Hee;Kim, Moon-Jong;Kim, Kyoung Su
    • The Korean Journal of Mycology
    • /
    • v.43 no.4
    • /
    • pp.253-259
    • /
    • 2015
  • Anthracnose caused by Collectotrichum acutatum is the most devastating disease of pepper plants in Korea. In this study, we evaluated the effect of selected antagonistic bacteria on control of anthracnose and plant growth promotion of pepper plants under field conditions. Four different bacterial isolates used in the current study were isolated from the pepper rhizosphere (GJ01, GJ11) and tidal flat (LB01, LB14) in previous studies. Four bacterial isolates, together with a control strain (EXTN-1), showed antifungal activity against C. acutatum in a dual culture assay. To test for plant growth promotion effect, seedling vigor index and growth parameters of pepper were measured under field condition. As a result, all four bacterial isolates were effective for improving plant growth promotion. The strain GJ01 was the most effective in improving the seedling vigor on pepper, but the strain GJ11 in increasing the pepper fruit yield. The incidence of anthracnose was inhibited in the range of 63.2~72.5% by treatment of four bacterial isolates. The current study indicated that the four bacterial isolates could be used as potential biological control agents of anthracnose disease of pepper.

Plant Growth Promotion in Soil by Some Inoculated Microorganisms

  • Jeon, Jong-Soo;Lee, Sang-Soo;Kim, Hyoun-Young;Ahn, Tae-Seok;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.271-276
    • /
    • 2003
  • The inoculation of some microorganisms into a microcosm containing soil from a barren lakeside area at Lake Paro in Kangwon-do enhanced plant growth significantly. The direct and viable counts of soil bacteria and soil microbial activities measured by electron transport system assay and fluorescein diacetate hydrolysis assay were higher in inoculated soil. The plant growth promoting effect of this inoculation may be caused by phytohormone production and the solubilization of insoluble phosphates by the inoculated bacteria. Three inoculated strains of Pseudomonas fluorescens produced several plant growth promoting phytohormones, including indole-3-acetic acid (auxin), which was confirmed by thin layer chromatography and GC/MS. P. fluorescens strain B16 and M45 produced 502.4 and 206.1 mg/l of soluble phosphate from Ca3(PO4)2 and hydroxyapatite, respectively. Bacillus megaterium showed similar solubilization rates of insoluble phosphates to those of Pseudomonas spp. We believe that this plant growth promoting capability may be used for the rapid revegetation of barren or disturbed land.

Tobacco Growth Promotion by the Entomopathogenic Fungus, Isaria javanica pf185

  • Lee, Yong-Seong;Kim, Young Cheol
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.126-133
    • /
    • 2019
  • Isaria javanica pf185 is an important entomopathogenic fungus with potential for use as an agricultural biocontrol agent. However, the effect of I. javanica pf185 on plant growth is unknown. Enhanced tobacco growth was observed when tobacco roots were exposed to spores, cultures, and fungal cell-free culture supernatants of this fungus. Tobacco seedlings were also exposed to the volatiles of I. javanica pf185 in vitro using I-plates in which the plant and fungus were growing in separate compartments connected only by air space. The length and weight of seedlings, content of leaf chlorophyll, and number of root branches were significantly increased by the fungal volatiles. Heptane, 3-hexanone, 2,4-dimethylhexane, and 2-nonanone were detected, by solid-phase micro-extraction and gas chromatography-mass spectrophotometry, as the key volatile compounds produced by I. javanica pf185. These findings illustrate that I. javanica pf185 can be used to promote plant growth, and also as a biocontrol agent of insect and plant diseases. Further studies are necessary to elucidate the mechanisms by which I. javanica pf185 promotes plant growth.

Evaluation of Bacillus subtilis Native Strains for Plant Growth Promotion and Induced Systemic Resistance in Tomato and Red-pepper (토마토, 고추의 생육촉진 및 병 저항성 의 농업적 활용을 위한 토착 Bacillus subtilis의 생물활성 평가)

  • Park, Jin-Woo;Jahaggirdar, Shamarao;Cho, Yung-Eun;Park, Kyoung-Soo;Lee, Seo-Hyun;Park, Kyung-Seok
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • Bacillus subtilis strains isolated from different regions of Korea were screened for their plant growth promotion and induced systemic resistance (ISR) in tomato and red-pepper. The plant growth promotion on red-pepper and tomato revealed maximum plant height (22.73 cm) on red pepper treated with B. subtilis strain JE 21-1 and 30.18cm in case of tomato treated with B. subtilis strain JE 8-1. There was also significant improvement in root and shoot dry weight in both the plants. The strain JE 21-1 showed better promise for all growth parameters in red-pepper and tomato when compared to other strains and positive check BTH. Different strains screened in square plate method also revealed maximum plant height and leaf width, and suppressed anthracnose on red pepper in case of strain JE 21-1 at $10^6$ and $10^7$ cells/ml when compared to other strains. In all the bacterial inoculations the population was significantly high when compared to untreated check. In plant growth promotion with respect to fruit length and weight, fruit length was maximal in treating with JE 9-4 and ES 2-2, while fruit weight was maximal in treating with JE 3-6, ES4-2, ES2-2 and JE 21-2 on red pepper. In case of tomato, comparatively better fruit weight was in JE 21-1, ES 3-3 and JE 10-2 when compared to BTH and untreated control. The soft rot disease caused by Pectobacterium carotovorum SCCI was completely suppressed in case of transgenic tobacco harboring GUS gene related to PR1a and increased the level of salicylic acid significantly in combined application of JE 9-4 on par with BTH. Thus, this study clarified some potential Bacillus subtilis strains for plant growth promotion and ISR in red-pepper and tomato.

Effects of LED Light Quality of Urban Agricultural Plant Factories on the Growth of Daughter Plants of 'Seolhyang' Strawberry

  • Lee, Kook-Han
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.821-829
    • /
    • 2018
  • This study was conducted to examine the influence of Light-Emitting Diode (LED) light quality in urban agricultural plant factories on the growth and development of Seolhyang strawberry daughter plants in order to improve the efficiency of daughter plant growth and urban agriculture. LED light quality by demonstrated that above-ground growth and development were greatest for daughter plant 2. Daughter plant 1 showed the next highest growth and development, followed by daughter plant 3. Among the different qualities of LED light, the stem was thickest and growth rate of leaves was highest for R + B III (LED quality: red 660 nm + blue 450 nm/photosynthetic photon flux density (PPFD): $241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R (red $660nm/115-117{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). Plant height, leaf width, petiole length, and the leaf growth rate were highest for W (white fluorescent lamp/$241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R + B I (red 660nm+blue 450nm/$80-82{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). For above-ground growth and development, as the plants surpassed the seedling age, mixed light (red + blue), rather than monochromatic light (red or blue), and higher PPFD values tended to increase development. Regarding the quality of the LED light, daughter plant 2 showed the highest chlorophyll content, followed by daughter plant 1, and daughter plant 3 showed the least chlorophyll content. When the wavelength was monochromatic, chlorophyll content increased, compared to that when PPFD values were increased. Mixed light vitality was highest in daughter plant 2, followed by 1, and 3, showed increased photosynthesis when PPFD values were high with mixed light, in contrast to the results observed for chlorophyll content.