• Title/Summary/Keyword: Plant-growth promotion

Search Result 337, Processing Time 0.027 seconds

Isolation of Indole-3-acetic acid (IAA) producing Arthrobacter sp. and plant growth promotion effect (Indole-3-acetic acid (IAA) 생성 Arthrobacter sp.의 분리 및 식물 생육촉진 효과)

  • Da Som Kim;Ho-Young Shin;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.831-838
    • /
    • 2022
  • An auxin-producing bacteria, KSD16, KSD33, and KSD36 were isolated from agricultural soil. The strain KSD16, KSD33, and KSD36 was classified as a strain of Arthrobacter sp. based on phylogenetic analysis of 16S rRNA gene. The isolated KDS16, KDS33, and KSD36 was confirmed to produce indole-3-acetic acid (IAA), which is one of the auxin hormones. When the concentration of IAA was assessed the maximum concentration of IAA, 206.62 mg L-1, was detected from the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 48 h at 28 ℃. To study the effect of IAA producing bacteria on germination rate, seeds of Mung bean were prepared for each treatment. KSD16, KSD33, and KSD36 showed significant increase in root length and number of adventitious roots than the controls. To investigate the growth-promoting effects on the crops, Arthrobacter species were placed in water cultures and seed pots of mung beans. In consequence, the seed germination of mung beans was 73.4% higher than the control.

Evaluation of Tomato Growth-promoting Effect and Mineral Nutrient of Farm-made Liquid Fertilizers (농가 자가제조 유기액비의 토마토 생육 촉진 효과 및 무기영양소 평가)

  • Kuk, Yong-In;Yun, Young-Beom;Jang, Se-Ji;Jeong, Jang-Yong;Kim, Dae-Seon;Kim, Sang-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.2
    • /
    • pp.205-224
    • /
    • 2019
  • This study was carried out in order to evaluate the growth promotion effects on tomato crops and to assess the mineral nutrient concentrations of farm-made liquid fertilizers used in organic cultivation in South Korea. We hope that this study will help to develop of a standardized manufacturing technique for these organic liquid fertilizers. We collected 62 farm-made liquid fertilizers made from various raw materials including fish, seaweed, food scraps, plant and crop by-products, and other materials. Two groups of tomato seedlings were treated at different times, one at 20 days and the other at 40 days after sowing. We used both foliar and soil applications. These seedlings were treated using liquid fertilizers at various dilution rates (x1000, x500 and x100). When foliar application was used, seedlings after 20 days had a 20-30% increase in shoot fresh weight with 47-48 fertilizers and seedlings after 40 days had a 20-30% increase in shoot fresh weight with 17-32 fertilizers. When soil application was used, seedlings after 20 days had the same increase in shoot fresh weight with 30-31 fertilizers and seedlings after 40 days also saw the same increase with 6-7 fertilizers. Therefore, our studies showed that application of liquid fertilizers to seedlings 20 days after sowing was most effective and that foliar treatment was more effective than soil treatments. We also observed that the higher the concentrations of fertilizer, particularly when applied twice rather than just once, the higher the rates of growth, which promoted shoot fresh weight more than plant height. Our results imply that mineral nutrients in liquid fertilizers seem to be the probable cause for the growth promotion observed in this study. However, more study is required to determine exactly which mineral nutrients are most effective.

Isolation of copper-resistant bacteria with plant growth promoting capability (식물 생장을 촉진할 수 있는 구리 내성 세균의 분리)

  • Kim, Min-Ju;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.251-256
    • /
    • 2017
  • Some rhizobacteria were isolated, that have copper resistance and can confer copper resistance to plants allowing growth under copper stress. Isolated strains Pseudomonas veronii MS1 and P. migulae MS2 produced 0.13 and 0.26 mmol/ml of siderophore, that is a metal-chelating agent, and also showed 64.6 and 77.9% of biosorption ability for Cu in 20 mg/L Cu solution, respectively. Copper can catalyze a formation of harmful free radicals, which may cause oxidative stress in organisms. Removal activity of 1,1-diphenyl-2-picryl hydrazyl radical and antioxidant capacity of strains MS1 and MS2 increased up to 82.6 and 78.1%, respectively compared to those of control at 24 h of incubation. They exhibited 7.10 and $6.42{\mu}mol$ ${\alpha}$-ketobutyrate mg/h of 1-aminocyclopropane-1-carboxylic acid deaminase activity, respectively, which reduced levels of stress hormone, ethylene in plants, and also produced indole-3-acetic acid and salicyclic acid that can help plant growth under abiotic stress. All these results indicated that these copper-resistant rhizobacteria could confer copper resistance and growth promotion to plants.

Defense Response and Suppression of Phytophthora Blight Disease of Pepper by Water Extract from Spent Mushroom Substrate of Lentinula edodes

  • Kang, Dae-Sun;Min, Kyong-Jin;Kwak, A-Min;Lee, Sang-Yeop;Kang, Hee-Wan
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.264-275
    • /
    • 2017
  • The spent mushroom substrate (SMS) of Lentinula edodes that was derived from sawdust bag cultivation was used as materials for controlling Phytophthora blight disease of pepper. Water extract from SMS (WESMS) of L. edodes inhibited mycelial growth of Phytophthora capsici, suppressed Phytophthora blight disease of pepper seedlings by 65% and promoted growth of the plant over 30%. In high performance liquid chromatography (HPLC) analysis, oxalic acid was detected as the main organic acid compound in WESMS and inhibited the fungal mycelium at a minimum concentration of 200 mg/l. In quantitative real-time PCR, the transcriptional expression of CaBPR1 (PR protein 1), CaBGLU (${\beta}$-1,3-glucanase), CaPR-4 (PR protein 4), and CaPR-10 (PR protein 10) were significantly enhanced on WESMS and DL-${\beta}$-aminobutyric acid (BABA) treated pepper leaves. In addition, the salicylic acid content was also increased 4 to 6 folds in the WESMS and BABA treated pepper leaves compared to water treated leaf sample. These findings suggest that WESMS of L. edodes suppress Phytophthora blight disease of pepper through multiple effects including antifungal activity, plant growth promotion, and defense gene induction.

Solubilization of Inorganic Phosphates and Plant Growth Promotion by Pantoea Strains

  • Walpola, Buddhi Charana;Kong, Won-Sik;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.494-501
    • /
    • 2013
  • Two phosphate solubilizing Pantoea strains (P. agglomerans and P. rodasii) were employed in elucidating their phosphate solubilizing potential under different carbon and nitrogen sources, pH, temperature and salt conditions. Plant growth promoting characteristics such as ACC deaminase activity, indole acetic acid (IAA), HCN, ammonia, and siderophore production of the two strains were assessed in vitro. Potential applicability of the strains as bio-inoculants was also evaluated in pot experiments conducted under green house conditions. Phosphate solubilization measured as the amount of phosphorous released into the medium was recorded as 810 and $788{\mu}g\;ml^{-1}$ respectively by P. agglomerans and P. rodasii. Glucose at the rate of 2% was found be the best carbon source, while $(NH_4)_2SO_4$ was the best nitrogen source for both strains. Despite a slight decrease in phosphate solubilization observed at higher temperature, pH and salt concentrations, both strains could withstand against a range of temperature ($30-35^{\circ}C$), pH (7-9) and the presence of NaCl (up to 5%) without much compromising the phosphate solubilization. Different plant growth promoting traits (ACC deaminase activity, IAA, HCN, ammonia, and siderophore production) of the strains and their ability to promote the growth of green gram seedlings indicate that both strains possess high potential to be used as bio-inoculants.

Penicillium menonorum: A Novel Fungus to Promote Growth and Nutrient Management in Cucumber Plants

  • Babu, Anam Giridhar;Kim, Sang Woo;Yadav, Dil Raj;Hyum, Umyong;Adhikari, Mahesh;Lee, Youn Su
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • The present study is the first report on the isolation of Penicillium menonorum from rhizosphere soil in Korea and its identification based on morphological characteristics and internal transcribed spacer gene sequence. The fungal isolate was named KNU-3 and was found to exhibit plant growth-promoting (PGP) activity through indole acetic acid (IAA) and siderophore production, as well as P solubilization. KNU-3 produced 9.7 mg/L IAA and solubilized 408 mg of $Ca_3PO_4/L$, and inoculation with the isolate significantly (p < 0.05) increased the dry biomass of cucumber roots (57%) and shoots (52%). Chlorophyll, starch, protein, and P contents were increased by 16%, 45%, 22%, and 14%, respectively, compared to plants grown in uninoculated soil. The fungus also increased soil dehydrogenase (30%) and acid phosphatase (19%) activities. These results demonstrate that the isolate KNU-3 has potential PGP attributes, and therefore it can be considered as a new fungus to enhance soil fertility and promote plant growth. Moreover, the discovery of PGP ability and traits of this fungus will open new aspects of research and investigations. In this study, plant growth promotion by P. menonorum KNU-3 is reported for the first time in Korea after its original description.

Shading Effect on Growth and Flowering of Orostachys japonicus A. Berger (차광처리가 바위솔의 생장과 개화에 미치는 영향)

  • Hong, Dong-Oh;Lee, Chang-Woo;Kim, Hong-Young;Kang, Jin-Ho;Ryu, Yeong-Seop;Shin, Sung-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.4
    • /
    • pp.239-243
    • /
    • 2006
  • Orostachys japonicus, a monocarpic plant, is artificially grown in greenhouses. The study was carried out to examine the effect of shading (0, 35, 55, 75, 95%) on growth, morphological characters, and flowering. The treatments were done on August 25 and afterward samples were taken every 2 weeks until October 20, in which growth, morphological and flowering related characters were measured. With severer shading plant height, inflorescence length, number of leaves including bracts and stem diameter were decreased although severely declined in 95% shading treatment. Leaves and bracts, stem, root, shoot and total dry weights increasingly declined with severer shading. Florets formed on the inflorescence showed similar response to the shading treatment as plant height did. Flowering of the florets was not observed throughout all the sampling period, meaning that different light intensities by shading did not affect their flowering.

Effect of Biostimulator Chlorella fusca on Improving Growth and Qualities of Chinese Chives and Spinach in Organic Farm

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Ko, Byong-Gu;Park, Jong-Ho;Hwang, Soo-Gen;Kim, Baeg-Ho
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.567-574
    • /
    • 2018
  • This study was conducted to investigate the efficacy of freshwater alga, Chlorella fusca on the improvement of growth and qualities in organic spinach and Chinese chives farm. The average height of Chinese chives treated with the chlorella was 3.7 cm smaller than that of the untreated. The leaf width and fresh weight of Chinese chives treated with the chlorella was 0.5 mm wider and 30.3 g heavier than that of the untreated. The commercialization and yield of Chinese chives treated with the chlorella was 11.9% and 18.3%, respectively higher than that of the untreated. Also, the disease severity of gray mold disease of Chinese chives treated with the chlorella was reduced by more than 24.2% when compared with the untreated. The thickness and number of spinach leaves treated with chlorella was 27.9% and 41.8%, respectively higher than that of the untreated. The fresh weight and yield of the spinach treated with the chlorella was 63.6% and 31.5%, respectively higher than that of the untreated. Moreover, the mineral content of K, Ca, Mg, P, Fe, and Mn were recorded higher in the spinach treated with chlorella compared with that of untreated. The results indicated that the freshwater alga, Chlorella fusca is efficient and economical biostimulant in improving plant growth and quality of Chinese chives and spinach in organic farm.

Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp. (Bacillus spp. 엽면살포에 의한 가로수 및 고추의 병 방제)

  • Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.81-93
    • /
    • 2016
  • Out of plant-associated bacteria, certain plant growth-promoting bacteria (PGPB) have been reported to increase plant growth and productivity and to elicit induced resistance against plant pathogens. In this study, our objective was to broaden the range of applications of leaf-colonizing PGPB for foliar parts of road tress and pepper. Total 1,056 isolates of endospore-forming bacteria from tree phylloplanes were collected and evaluated for the enzymatic activities including protease, lipase, and chitinase and antifungal capacities against two fungal pathogens, Colletotrichum graminicola and Botrytis cinerea. Fourteen isolates classified as members of the bacilli group displayed the capacity to colonize pepper leaves after spraying inoculation. Three strains, 5B6, 8D4, and 8G12, and the mixtures were employed to evaluate growth promotion, yield increase and defence responses under field condition. Additionally, foliar application of bacterial preparation was applied to the road tress in Yuseong, Daejeon, South Korea, resulted in increase of chlorophyll contents and leaf thickness, compared with non-treated control. The foliar application of microbial preparation reduced brown shot-hole disease of Prunus serrulata L. and advanced leaf abscission in Ginkgo biloba L. Collectively, our results suggest that leaf-colonizing bacteria provide potential microbial agents to increase the performance of woody plants such as tree and pepper through spray application.

Effect of Plant Growth and Environmental Enhancement of Soils through Nanoparticle Application

  • Kim, Donggiun
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.182-187
    • /
    • 2020
  • Silver nanoparticles (AgNPs) have been manufactured in recent years and widely used in various fields. Reactive oxygen species (ROS), which occur in AgNPs, destroy cell membranes. It is widely accepted that ROS generated in this manner inhibit microorganisms growth and causes toxic effects, However, it does not affect cell membranes directly but positively affects growth in plants with cell walls. The nanoball used in this experiment is a new material that generates ROS stably and is used in aqueous solution. Results of this study indicate a 30% increase in yield of Ginseng mixed with culture soil. The analysis of soil condition after cultivation showed that the possibility of repetitive cultivation in soil mixed with Nanoball was high. This suggests that Nanoball is an antimicrobial active material due to the microbial / extermination effect of pathogenic microorganisms. Therefore, there may be potential applications in agricultural cultivation sites as a repetitive cultivation technology that reuses soil.