• 제목/요약/키워드: Plant water stress

검색결과 441건 처리시간 0.036초

토양수분과 식생의 물 압박에 대한 생태수문학적 해석 : 추계학적 모형의 유도와 적용을 중심으로 (Ecohydrologic Analysis on Soil Water and Plant Water Stress : Focus on Derivation and Application of Stochastic Model)

  • 한수희;김상단
    • 한국물환경학회지
    • /
    • 제24권1호
    • /
    • pp.99-106
    • /
    • 2008
  • With globally increasing interests in climate-soil-vegetation system, a new stochastic model of soil water and plant water stress is derived for better understanding of the soil water and plant water stress dynamics and their role in water-controlled ecosystem. The steady-state assumption is used for simplifying the equations. The derived model is simple yet realistic that it can account for the essential features of the system. The model represents the general characteristics of rainfall, soil, and vegetation; i.e. the soil moisture constitutes the decrease form of the steady-state and the plant water stress becomes increasing with the steady state when the rainfall is decreased. With this model, further deep study for the effects of soil water and plant water stress on the system will be accomplished.

식생 물 부족 지수의 추계학적 거동과 기후변화가 그에 미치는 영향 (Stochastic Behavior of Plant Water Stress Index and the Impact of Climate Change)

  • 한수희;유가영;김상단
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.507-514
    • /
    • 2009
  • In this study, a dynamic modeling scheme is presented to describe the probabilistic structure of soil water and plant water stress index under stochastic precipitation conditions. The proposed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress index is investigated under a climate change scenario. The simulation results of soil water confirm that the proposed soil water model can properly reproduce the observations and show that the soil water behaves with consistent cycle based on the precipitation pattern. The simulation results of plant water stress index show two different PDF patterns according to the precipitation. The simple impact assessment of climate change to soil water and plant water stress is discussed with Korean Meteorological Administration regional climate model.

토양수분과 식생 스트레스 동역학에 기후변화가 미치는 영향 (The Impact of Climate Change on the Dynamics of Soil Water and Plant Water Stress)

  • 한수희;김상단
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.52-56
    • /
    • 2009
  • In this study a dynamic modeling scheme is presented to derive the probabilistic structure of soil water and plant water stress when subject to stochastic precipitation conditions. The newly developed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress is investigated under climate change scenarios. This model is based on the cumulant expansion theory, and has the advantage of providing the probabilistic solution in the form of probability distribution function (PDF), from which one can obtain the ensemble average behavior of the dynamics. The simulation result of soil water confirms that the proposed soil water model can properly reproduce the results obtained from observations, and it also proves that the soil water behaves with consistent cycle based on the precipitation pattern. The plant water stress simulation, also, shows two different PDF patterns according to the precipitation. Moreover, with all the simulation results with climate change scenarios, it can be concluded that the future soil water and plant water stress dynamics will differently behave with different climate change scenarios.

  • PDF

수분 부족 스트레스 처리시 Monodehydroascorbate Reductase (MDHAR)의 반응 (Response of Monodehydroascorbate Reductase (MDHAR) in Lettuce (Lactuca sativa L.) Leaves Subjected to Water Deficit Stress)

  • 강상재
    • 생물환경조절학회지
    • /
    • 제17권4호
    • /
    • pp.273-282
    • /
    • 2008
  • 수분 공급을 제한하여 수분 부족 스트레스를 처리한 상추식물에서 산화적 스트레스와 관련된 monodehydroascorbate reductase (MDHAR)의 활성도, 엽록소 함량, 과산화수소의 함량 등과의 상관관계를 조사한 결과, 생육배지의 수분의 함량이 감소함에 따라 식물체내 과산화수소의 생성량이 증가($R^2$=0.8851)하였으며, 수용성단백질 함량은 점차 감소($R^2$=0.9826)하는 경향을 나타내었다. 총 엽록소함량은 수분 부족 스트레스를 처리한 공시작물에서의 함량이 정상 생육시 보다 그 함량이 대체적으로 낮은 경향을 보였으며, 엽록소 a와 엽록소 b함량 변화도 총 엽록소의 함량변화와 비슷한 경향을 보였다. 그러나 총 엽록소에 대한 카로티노이드의 비율은 수분 부족 스트레스를 처리한 식물에서 정상생육 시 보다 더 높은 경향을 보였다. 수분 부족 스트레스가 진행됨에 따라 아스코브산의 함량은 정상 생육 시 보다 더 높은 경향을 보였으나 환원형인 디하이드로아스코브산의 함량은 수분 부족 스트레스를 처리한 초기에 정상생육 시 보다 더 낮은 경향을 보였다. MDHAR의 활성도는 사이토졸(cytosolic) 분획과 엽록체(chloroplastic) 분획에서 공히 크게 증가하였으며 MDHAR의 mRNA 전사 정도도 수분 부족 스트레스가 진행됨에 따라 크게 증가하였다. 수분함량이 감소함에 따라 MDHAR의 활성도가 크게 증가하였으며, 또한 과산화수소의 함량이 증가함에 따라서도 MDHAR의 활성도가 크게 증가($R^2$=0.9937과 0.8645)되어 수분 부족 스트레스로 나타나는 요인들과 MDHAR 사이에 밀접한 관련이 있음을 확인할 수 있었다.

ASSESSMENT OF POSSIBILITY OF PRIMARY WATER STRESS CORROSION CRACKING OCCURRENCE BASED ON RESIDUAL STRESS ANALYSIS IN PRESSURIZER SAFETY NOZZLE OF NUCLEAR POWER PLANT

  • Lee, Kyoung-Soo;Kim, W.;Lee, Jeong-Geun
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.343-354
    • /
    • 2012
  • Primary water stress corrosion cracking (PWSCC) is a major safety concern in the nuclear power industry worldwide. PWSCC is known to initiate only in the condition in which sufficiently high tensile stress is applied to alloy 600 tube material or alloy 82/182 weld material in pressurized water reactor operating environments. However, it is still uncertain how much tensile stress is re-quired to generate PWSCC or what causes such high tensile stress. This study was performed to pre-dict the magnitude of weld residual stress and operating stress and compare it with previous experi-mental results for PWSCC initiation. For the study, a pressurizer safety nozzle was selected because it is reported to be vulnerable to PWSCC in overseas plants. The assessment was conducted by nu-merical analysis. Before performing stress analysis for plant conditions, a preliminary mock-up ana-lysis was done. The result of the preliminary analysis was validated by residual stress measurement in the mock-up. After verification of the analysis methodology, an analysis under plant conditions was conducted. The analysis results show that the stress level is not high enough to initiate PWSCC. If a plant is properly welded and operated, PWSCC is not likely to occur in the pressurizer safety nozzle.

Superoxide Dismutase와 Ascorbate Peroxidase를 엽록체에 과발현하는 형질전환 담배의 수분스트레스에 대한 반응 (Responses of Transgenic Tobacco Plants Overexpressing Superoxide Dismutase and Ascorbate Peroxidase in Chloroplasts to Water Stress)

  • 최선미;권석윤;곽상수;박용목
    • 한국환경과학회지
    • /
    • 제10권1호
    • /
    • pp.79-84
    • /
    • 2001
  • To assess resistance of transgenic tobacco plants which overexpress superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts to water stress, changes in leaf water potential, turgor potential, stomatal conductance and transpiration rate were measured. Leaf water potential in all plants remained high up to day 4 after withholding water but thereafter decreased markedly. In spite of a remarkable decrease in leaf water potential, some of transgenic plants maintained higher turgor potential compared with control plant on day 12. In particular, the transgenic plant expressing MnSOD showed an outstanding maintenance in turgor pressure by osmotic adjustment throughout the experiment, resulting in high stomatal conductance and transpiration rate. However, among transgenic plants, osmotic potential was reduced more effectively in multiple transformants such as the double transformant expressing both MnSOD and APX, and the triple transformant expressing CuznSOD, MnSOD and APX than single transformants. Consequently, further research is needed to get general agreement on the tolerance of transgenic plants to water stress at different growth stages for each transgenic plant.

  • PDF

Direct Evidence of Endophyte (Neotyphodium coenophialum) Genotype Effect on Growth and Vertical Transmission of Endophyte in Tall Fescue (Schedonorus phoenix Scop.) Under Water Stress

  • Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • 제27권3호
    • /
    • pp.249-256
    • /
    • 2011
  • Tall fescue (Schedonorus phoenix Scop.) is resistant to abiotic and biotic stresses through a symbiotic relationship with Neotyphodium coenophialum. However, this endophyte has been considered detrimental since it produces toxic alkaloids to animals. It is vital to understand mutuality between these two to maximize positive impact of the endophyte on agri-ecosystem. Little research has been conducted on endophyte transmission mechanism in planta. To provide basic information related to endophyte transmission, an experiment was conducted to examine the effect of endophyte genotype and water stress on endophyte transmission by imposing soil moisture deficits at different stages of panicle development. There was water stress effect on endophyte frequency but not on concentration, whereas endophyte genotype significantly influenced endophyte concentration in pseudostem of tall fescue at boot stage. Reproductive tillers showed greater endophyte frequency and concentration. Endophyte frequency in florets or seeds depended on position within panicle. There was no drought effect on endophyte concentration, but showed the effect of endophyte genotype on endophyte concentration in florets and seeds. Overall endophyte concentration in seeds was higher. From this study, we may conclude that although water stress reduced endophyte frequency in vegetative tiller, water stress does not have effect on endophyte transmission, suggesting that drought is not an important factor controlling the endophyte transmission from plant to seed. Endophyte genotype and seed position in a panicle affected endophyte transmission, indicating that these two factors are involved in endophyte transmission and may determine seed transmission of endophyte in tall fescue.

인공토양에 혼합된 지오휴머스가 토양수분 증가와 식물의 건조 스트레스에 미치는 영향 (Effects of Geohumus Mixed with Artificial Soil on Soil Water Retention and Plant Stress Response)

  • 이염;김동엽;김형보;김영기
    • 한국환경복원기술학회지
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2016
  • Currently, urban green space is disappearing due to urbanization, industrialization and various environmental problems including the disruption of the ecology in urban areas. To solve such problems and increase urban green area, roof greening has been suggested as an alternative. Through observing the responses of three plant species (Mukdenia rossii, Dianthus chinensis, and Pachysandra terminalis) plantrd on the soil mixed with Geohumus, this study investigated the effect of Gehumus on soil water content and plant survival. Soil water content of the rooftop soils has been increased when mixed with Geohumus. The responses were proportional to the amount of Geohumus in the mixture. Geohumus exerted a stronger influence on raising soil moisture content for soil A which had lower water-holding capacity. The stress responses of the plants varied in relation to the amount of Geohumus and soil moisture content. The stress response was lowest for Dianthus chinensis and increased in the order of Mukdenia rossii and Pachysandra terminalis. With the highest plant stress, Pachysandra terminalis showed the lowest survival rate among the three species. Without irrigation, the plants survived only for six weeks on green roofs. The survival rate differed depending on the amount of Geohumus mixed. The results of the experiment showed, with some exceptions, that Geohumus helped to improve soil water content, reduce plant stress, and extend plant survival period.

Water relations of plants under environmental stresses: role of aquaporins

  • Kang, H.S.;Ahn, S.J.;Hong, S.W.;Chung, G.C.
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.71-80
    • /
    • 2005
  • Effects of low temperature ($8^{\circ}C$) on the hydraulic conductivity of young roots of a chilling-sensitive (cucumber; Cucumis sativus L.) and a chilling-resistant (figleaf gourd; Cucurbita ficifolia Bouche) crop have been measured at the levels of whole root systems (root hydraulic conductivity, $Lp_r$) and of individual cortical cells (cell hydraulic conductivity, Lp). In figleaf gourd, there was a reduction only in hydrostatic $Lp_r$ but not in osmotic $Lp_r$ suggesting that the activity of water channels was not much affected by low root temperature (LRT)treatment in this species. Changes in cell Lp in response to chilling and recovery were similar asroot level, although they were more intense at the root level. Roots of figleaf gourd recovered better from LRT treatment than those of cucumber. In figleaf gourd, recovery (both at the root and cell level) often resulted in Lp and $Lp_r$ values which were even bigger than the original, i.e. there was an overshoot in hydraulic conductivity. These effects were larger forosmotic (representing the cell-to-cell passage of water) than for hydrostatic $Lp_r$. After a short term (1 d) exposure to $8\;^{\circ}C$ followed by 1 d at $20\;^{\circ}C$, hydrostatic $Lp_r$ of cucumber nearly recovered and that of figleaf gourd still remained higher due to the overshoot. On the contrary, osmotic $Lp_r$ and cell Lp in both species remained high by a factor of 3 as compared to the control, possibly due to an increased activity of water channels. After pre-conditioning of roots at LRT, increased hydraulic conductivitywas completely inhibited by $HgCl_2$ at both the root and cell levels. Different from figleaf gourd, recovery from chilling was not complete in cucumber after longer exposure to LRT. It is concluded that at LRT, both changes in the activity of aquaporins and alterations of root anatomy determine the water uptake in both species. To better understand the aquaporin function in plants under various stress conditions, we examined the transgenic Arabidopsisand tobacco plants that constitutively overexpress ArabidopsisPIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates were found between the transgenic and wild-type plants under favorable growth conditions. By contrast, overexpression of PIP1;4 or PIP2;5 had a negative effect on seed germination and seedling growth under drought stress, whereas it had a positive effect under cold stress and no effect under salt stress. Measurement of water transport by cell pressure probe revealed that these observed phenotypes under different stress conditions were closely correlated with the ability of water transport by each aquaporin in the transgenic plants. Together, our results demonstrate that PIP-type aquaporins play roles in seed germination, seedling growth, and stress response of Arabidopsis and tobacco plants under various stress conditions, and emphasize the importance of a single aquaporin-mediated water transport in these cellular processes.

  • PDF

Photosynthetic characteristics and chlorophyll of Vitex rotundifolia in coastal sand dune

  • Byoung-Jun Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • 제47권3호
    • /
    • pp.103-116
    • /
    • 2023
  • Background: This study analyzed the physiological adaptations of a woody plant, Vitex rotundifolia, in Goraebul coastal sand dunes from May to September 2022. Environmental factors and physiological of plants growing under field and controlled (pot) conditions were compared. Results: Photosynthesis in plants growing in the coastal sand dunes and pots was the highest in June 2022 and July 2022, respectively. Chlorophyll fluorescence indicated the presence of stress in the coastal sand dune environment. The net photosynthesis rate (PN) and Y(II) were highest in June in the coastal sand dune environment and July in the pot environment. In August and September, Y(NPQ) increased in the plants in the coastal sand dune environment, showing their photoprotective mechanism. Chlorophyll a and b contents in the pot plant leaves were higher than those in the coastal sand dune plant leaves; however, chlorophyll-a/b ratio was higher in the coastal sand dune plant leaves than in the pot plant leaves, suggesting a relatively high photosynthetic efficiency. Carotenoid content in the coastal sand dune plant leaves was higher in August and September 2022 than that in the pot plant leaves. Leaf water and soluble carbohydrate contents of the coastal sand dune plant leaves decreased in September 2022, leading to rapid leaf abscission. Diurnal variations in photosynthesis and chlorophyll fluorescence in both environments showed peak activity at 12:00 hour; however, the coastal sand dune plants had lower growth rates and Y(II) than the pot plants. Plants in the coastal sand dunes had higher leaf water and ion contents, indicating that they adapted to water stress through osmotic adjustments. However, plants growing in the coastal sand dunes exhibited reduced photosynthetic activity and accelerated decline due to seasonal temperature decreases. These findings demonstrate the adaptation mechanisms of V. rotundifolia to water stress, poor soils, and high temperature conditions in coastal sand dunes. Conclusions: The observed variations indicate the responses of the V. rotundifolia to environmental stress, and may reveal its survival strategies and adaptation mechanisms to stress. The results provide insights into the ecophysiological characteristics of V. rotundifolia and a basis for the conservation and restoration of damaged coastal sand dunes.