• Title/Summary/Keyword: Plant transformation

Search Result 812, Processing Time 0.032 seconds

Optimized Protocols for Efficient Plant Regeneration and Gene Transfer in Pepper (Capsicum annuum L.)

  • Mihalka, Virag;Fari, Miklos;Szasz, Attila;Balazs, Ervin;Nagy, Istvan
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.143-149
    • /
    • 2000
  • An Efficient in vitro regeneration system and an optimized Agrobacterium mediated transformation protocol are described, based on the use of young seedling cotyledons of Capsicum annuum L. Optimal regeneration efficiency can be obtained by cultivating cotyledon explants on media containing 4 mg/L benzyladenine and 0.1 mg/L indolacetic acid. The effect of antibiotics used to eliminate Agrobacteria, as well as the toxic level of some generally used selection agents (kanamycin, geneticin, hygromycin, phosphinotricin and methotrexate) in regenerating pepper tissues were determined. To enable the comparison of different selection markers in identical vector background, a set of binary vectors containing the marker genes for NPTII, HPT, DHFR and BAR respectively, as well as the CaMV 35S promoter/enhancer-GUS chimaeric gene was constructed and introduced into four different Agrobacterium host strains.

  • PDF

Agrobacterium-mediated Transformation of Rice 'Ilmibyeo' using HPT Selection Maker Gene

  • Guo, Jia;Cho, Joon-Hyeong;Jo, Hye-Jeong;Seong, Eun-Soo;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.3
    • /
    • pp.242-246
    • /
    • 2007
  • This study was conducted to produce the transgenic plant of rice. We obtained Agrobacterium AGL1 harbaring pCambial 300 vector with HPT gene. We carried out PCR analysis of 22 ea putative transgenic rice to investigate transformed lines. The 3 ea transgenic lines were detected insertion of HPT gene. Transgenic lines selected from PCR analysis were performed by Southern blot. From Southern blot, we obtained that two transgenic lines detected single band. We are going to study the method improving of cotransformation as well as transformation efficiency in rice.

Effect of Callus Type and Antioxidants on Plant Regeneration and Transformation of Tall Fescue (캘러스의 형태와 항산화물질 첨가가 톨 페스큐의 식물체 재분화와 형질전환효율에 미치는 영향)

  • Lee Ki-Won;Lee Sang-Hoon;Kim Do-Hyun;Lee Dong-Gi;Won Sung-Hye;Lee Hyo-Shin;Lee Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.2
    • /
    • pp.77-82
    • /
    • 2006
  • An efficient transformation system for the production of transgenic plants has been developed for tall fescue (Festuca arundinacea Schreb.) via Agrobacterium-mediated transformation of seed-derived callus. From the point of morphogenetic capacity, three types of callus were selected. High frequency of plant regeneration was obtained by selection of type II callus, and the plant regeneration frequency was 52.6% when embryogenic callus were cultured on the regeneration medium. Supplementation of the media with 10 mg/L $AgNO_3$ and 40 mg/L cysteine enhanced frequencies of plant regeneration up to 65.3%. The highest transformation efficiency was also obtained when type II callus were inoculated with Agrobacterium. Southern blot analysis of PCR products of transgenic plants demonstrated that transgenes were successfully integrated into the genome of tall fescue. Efficient regeneration system and transformation established in this study will be useful for molecular breeding of tall fescue through genetic transformation.