• Title/Summary/Keyword: Plant training system

Search Result 144, Processing Time 0.025 seconds

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

A Study on the Utilization of QR Code for Improving the Effectiveness of Safety Education in Power Plant Workplaces (발전소 사업장의 안전교육 효과성 향상을 위한 QR Code 활용방안 연구)

  • Oh, Myeong-Geun;Kim, Young-Kook;Jeong, Kyung-Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.33-39
    • /
    • 2022
  • In order to improve the implementation of safety and health education at the site for industrial accident prevention activities, research was conducted to minimize inconvenience and increase utilization by redesigning and developing existing education methods. To date, occupational safety and health education has been conducted without considering the general work characteristics and functional facilities (mechanical, electrical, instrumentation, chemical) of workers (mechanical: turbine, valve, pump, hydraulic system, electrical: generator, breaker, motor, etc.). In particular, plant facilities were classified as mechanical and electrical facilities to improve the methodology for industrial safety and health education for plant maintenance workers. In addition, the "One Page Education Plan" was announced as a learning case because the spread of COVID-19 infectious diseases made it impossible to reduce or control the number of people in all groups and groups. The improvement of this training method will play a major role in improving the effectiveness of safety education in power plant workplaces.

Legalization of Tree Doctor System and the Role of KSPP (나무의사 제도 법제화에 따른 식물병리학회의 역할)

  • Cha, Byeongjin
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.207-211
    • /
    • 2017
  • In December of 2016, 'The Forest Protection Act' was amended partly in The National Assembly and the socalled 'Tree Doctor Act' was promulgated. Tree Doctor Act will be enforced from June 28, 2018. Under the new Act, none other than 'Tree Hospital' can do disease and pest management work for trees in public living space. The only exclusive qualification for tree hospital is a 'Tree Doctor', the government registered license which is newly established by the Act. To become a tree doctor, he/she must complete the tree doctor training courses in the designated 'Tree Doctor Academy' and pass the qualification test. Currently, Korea Forest Service is drafting the enforcement ordinances and regulations for the implement of Tree Doctor Act. When taking into consideration that the most fundamental and important discipline of the plant and tree health care is the plant pathology, and that the tree health care is a promising business for young plant pathology people, Korean Society of Plant Pathology is ought to be actively involved in the preparation of the enforcement ordinances and regulations, and help the early establishment of the new tree health care system in living spaces of Korea.

A Study on The Neural Network Controller using Relative Gain Matrix Technique (상대이득 행렬 기법을 이용한 신경망 제어기 설계에 관한 연구)

  • Seo, Ho-Joon;Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.606-608
    • /
    • 1997
  • In this paper, Neuro-Fuzzy Controller(NFC), a fuzzy system realized using a neural network, is to adopt for the multivariable system. In the multivariable system, the interactive effects between the variables should be taken into account. A simple compensator, using the steady-state information can be obtained for open-loop stable systems, is presented to cope with this problem. However, it should be supposed that the plant is unknown to the control system designer, but an estimate of the DC gain has been obtained by carrying out experiments on the plant. Also, if the variables are not combinated completely, it is difficult to design the controller. Therefore, we design a neuro-fuzzy controller which controls a multivariable system with only input output informations, and compare its performance with that of a PI controller. In the proposed controller, the construction of the membership functions and rule base, which is highly heuristic, can be achieved using a training process. This allows the combination of knowledge of human experts and evidence from input-output data.

  • PDF

A Study on the Leakage Characteristic Evaluation of High Temperature and Pressure Pipeline at Nuclear Power Plants Using the Acoustic Emission Technique (음향방출기법을 이용한 원전 고온 고압 배관의 누설 특성 평가에 관한 연구)

  • Kim, Young-Hoon;Kim, Jin-Hyun;Song, Bong-Min;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.466-472
    • /
    • 2009
  • An acoustic leak monitoring system(ALMS) using acoustic emission(AE) technique was applied for leakage detection of nuclear power plant's pipeline which is operated in high temperature and pressure condition. Since this system only monitors the existence of leak using the root mean square(RMS) value of raw signal from AE sensor, the difficulty occurs when the characteristics of leak size and shape need to be evaluated. In this study, dual monitoring system using AE sensor and accelerometer was introduced in order to solve this problem. In addition, artificial neural network(ANN) with Levenberg.Marquardt(LM) training algorithm was also applied due to rapid training rate and gave the reliable classification performance. The input parameters of this ANN were extracted from varying signal received from experimental conditions such as the fluid pressure inside pipe, the shape and size of the leak area. Additional experiments were also carried out and with different objective which is to study the generation and characteristic of lamb and surface wave according to the pipe thickness.

Real-time process simulation system for training plant operators

  • Koyama, Kazuo;Tsukamoto, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.915-920
    • /
    • 1988
  • To improve the safety and productivity of continuous processes, it is becoming increasingly necessary to have simulators to train operators. This paper describes a real-time simulator developed for this purpose by Yokogawa in cooperation with the Tokyo Gas Company. This simulator - based on the YEWCOM computer - not only trains operators, but also evaluates their proficiency.

  • PDF

Artificial Neural Network and Application in Temperature Control System

  • Sugisaka, Masanori;Liu, Zhijun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.260-264
    • /
    • 1998
  • In this paper, we implemented the neuro-computer called MY-NEUPOWER in our research to carry out the artificial neural networks (ANN) calculating. An application software was developed based on a neural network using back-propagation (BP) algorithm under the UNIX platform by the specified computer language named MYPARAL. This neural network model was used as an auxiliary controller in the temperature control of sinter cooler system in steel plant which is a nonlinear system. The neural controller was trained off-line using the real input-output data as training pairs. We also made the system description of adaptive neural controller on the same temperature control system. We will carry out the whole system simulation to verify the suitability of neural controller in improving the system features.

  • PDF

Development of Electronic Management System for improving the utilization of Engineering Model in Domestic Nuclear Power Plant (국내 원전 엔지니어링운영모델 활용성 향상을 위한 시스템 개발)

  • Lee, Sang-Dae;Kim, Jung-Wun;Kim, Mun-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.79-85
    • /
    • 2021
  • A standard engineering model that reflects the current organization system and engineering operation process of domestic nuclear power plants was developed based on the Standard Nuclear Performance Model developed by the American Nuclear Energy Association. The level 0 screen, which is the main screen of the engineering model computer system, consisted of an object tree structure, which provided information that is phased down from a higher structure level to a lower structure level (i.e., level 3). The level 1 screen provided information related to the sub-process of the engineering operation, whereas the Level 2 screen provided information related to each engineering operation activity. In addition, the Level 2 screen provided additional functions, such as linking electronic procedures/guidelines, providing electronic performance forms, and connecting legacy computer systems (such as total equipment reliability monitoring system, configuration management systems, technical information systems, risk monitoring systems, regulatory information, and electronic drawing system). This screen level increased the convenience of user's engineering tasks by implementing them. The computerization of an engineering model that connects the entire engineering tasks of an establishment enables the easy understanding of information related to the engineering process before and after the operation, and builds a foundation for the enhancement of the work efficiency and employee capacity. In addition, KHNP developed an online training module, which operates as an e-learning process, on the overview and utilization of a standard engineering model to expand the understanding of standard engineering models by plant employees and to secure competitiveness.

A Study on Loose Part Monitoring System in Nuclear Power Plant Based on Neural Network

  • Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.95-99
    • /
    • 2002
  • The Loose Part Monitoring System(LPMS) has been designed to detect. locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal. Rising time. Half period. and Global time, they are used as the inputs to neural network . Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising clime. Half Period amplitude. The result shored that the neural network would be applied to LPMS. Also, applying the neural network to thin practical false alarm data during startup and impact test signal at nuclear power plant, the false alarms are reduced effectively.

Bhumipol Dam Operation Improvement via smart system for the Thor Tong Daeng Irrigation Project, Ping River Basin, Thailand

  • Koontanakulvong, Sucharit;Long, Tran Thanh;Van, Tuan Pham
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.164-175
    • /
    • 2019
  • The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for agriculture, and caused water deficit in many irrigation projects. Farmers need to find extra sources of water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue in the irrigation project. The study aims to determine the smart dam operation system to mitigate water shortage in this irrigation project via introduction of machine learning to improve dam operation and irrigation demand estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The input vectors for ANN model are identified base on regression and principal component analysis. The structure of ANN (length of training data, the type of activation functions, the number of hidden nodes and training methods) is determined from the statistics performance between measurements and ANN outputs. On the other hands, the irrigation demand will be estimated by using satellite images, LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) values are estimated from the plant growth stage and soil moisture. The values are calibrated and verified with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in the irrigation project is then estimated from the plant growth stage and soil moisture in the area. With the estimated dam inflow and irrigation demand, the dam operation will manage the water release in the better manner compared with the past operational data. The results show how smart system concept was applied and improve dam operation by using inflow estimation from ANN technique combining with irrigation demand estimation from satellite images when compared with the past operation data which is an initial step to develop the smart dam operation system in Thailand.

  • PDF