Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.
In order to improve the implementation of safety and health education at the site for industrial accident prevention activities, research was conducted to minimize inconvenience and increase utilization by redesigning and developing existing education methods. To date, occupational safety and health education has been conducted without considering the general work characteristics and functional facilities (mechanical, electrical, instrumentation, chemical) of workers (mechanical: turbine, valve, pump, hydraulic system, electrical: generator, breaker, motor, etc.). In particular, plant facilities were classified as mechanical and electrical facilities to improve the methodology for industrial safety and health education for plant maintenance workers. In addition, the "One Page Education Plan" was announced as a learning case because the spread of COVID-19 infectious diseases made it impossible to reduce or control the number of people in all groups and groups. The improvement of this training method will play a major role in improving the effectiveness of safety education in power plant workplaces.
In December of 2016, 'The Forest Protection Act' was amended partly in The National Assembly and the socalled 'Tree Doctor Act' was promulgated. Tree Doctor Act will be enforced from June 28, 2018. Under the new Act, none other than 'Tree Hospital' can do disease and pest management work for trees in public living space. The only exclusive qualification for tree hospital is a 'Tree Doctor', the government registered license which is newly established by the Act. To become a tree doctor, he/she must complete the tree doctor training courses in the designated 'Tree Doctor Academy' and pass the qualification test. Currently, Korea Forest Service is drafting the enforcement ordinances and regulations for the implement of Tree Doctor Act. When taking into consideration that the most fundamental and important discipline of the plant and tree health care is the plant pathology, and that the tree health care is a promising business for young plant pathology people, Korean Society of Plant Pathology is ought to be actively involved in the preparation of the enforcement ordinances and regulations, and help the early establishment of the new tree health care system in living spaces of Korea.
Seo, Ho-Joon;Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
Proceedings of the KIEE Conference
/
1997.07b
/
pp.606-608
/
1997
In this paper, Neuro-Fuzzy Controller(NFC), a fuzzy system realized using a neural network, is to adopt for the multivariable system. In the multivariable system, the interactive effects between the variables should be taken into account. A simple compensator, using the steady-state information can be obtained for open-loop stable systems, is presented to cope with this problem. However, it should be supposed that the plant is unknown to the control system designer, but an estimate of the DC gain has been obtained by carrying out experiments on the plant. Also, if the variables are not combinated completely, it is difficult to design the controller. Therefore, we design a neuro-fuzzy controller which controls a multivariable system with only input output informations, and compare its performance with that of a PI controller. In the proposed controller, the construction of the membership functions and rule base, which is highly heuristic, can be achieved using a training process. This allows the combination of knowledge of human experts and evidence from input-output data.
Kim, Young-Hoon;Kim, Jin-Hyun;Song, Bong-Min;Lee, Joon-Hyun;Cho, Youn-Ho
Journal of the Korean Society for Nondestructive Testing
/
v.29
no.5
/
pp.466-472
/
2009
An acoustic leak monitoring system(ALMS) using acoustic emission(AE) technique was applied for leakage detection of nuclear power plant's pipeline which is operated in high temperature and pressure condition. Since this system only monitors the existence of leak using the root mean square(RMS) value of raw signal from AE sensor, the difficulty occurs when the characteristics of leak size and shape need to be evaluated. In this study, dual monitoring system using AE sensor and accelerometer was introduced in order to solve this problem. In addition, artificial neural network(ANN) with Levenberg.Marquardt(LM) training algorithm was also applied due to rapid training rate and gave the reliable classification performance. The input parameters of this ANN were extracted from varying signal received from experimental conditions such as the fluid pressure inside pipe, the shape and size of the leak area. Additional experiments were also carried out and with different objective which is to study the generation and characteristic of lamb and surface wave according to the pipe thickness.
To improve the safety and productivity of continuous processes, it is becoming increasingly necessary to have simulators to train operators. This paper describes a real-time simulator developed for this purpose by Yokogawa in cooperation with the Tokyo Gas Company. This simulator - based on the YEWCOM computer - not only trains operators, but also evaluates their proficiency.
In this paper, we implemented the neuro-computer called MY-NEUPOWER in our research to carry out the artificial neural networks (ANN) calculating. An application software was developed based on a neural network using back-propagation (BP) algorithm under the UNIX platform by the specified computer language named MYPARAL. This neural network model was used as an auxiliary controller in the temperature control of sinter cooler system in steel plant which is a nonlinear system. The neural controller was trained off-line using the real input-output data as training pairs. We also made the system description of adaptive neural controller on the same temperature control system. We will carry out the whole system simulation to verify the suitability of neural controller in improving the system features.
A standard engineering model that reflects the current organization system and engineering operation process of domestic nuclear power plants was developed based on the Standard Nuclear Performance Model developed by the American Nuclear Energy Association. The level 0 screen, which is the main screen of the engineering model computer system, consisted of an object tree structure, which provided information that is phased down from a higher structure level to a lower structure level (i.e., level 3). The level 1 screen provided information related to the sub-process of the engineering operation, whereas the Level 2 screen provided information related to each engineering operation activity. In addition, the Level 2 screen provided additional functions, such as linking electronic procedures/guidelines, providing electronic performance forms, and connecting legacy computer systems (such as total equipment reliability monitoring system, configuration management systems, technical information systems, risk monitoring systems, regulatory information, and electronic drawing system). This screen level increased the convenience of user's engineering tasks by implementing them. The computerization of an engineering model that connects the entire engineering tasks of an establishment enables the easy understanding of information related to the engineering process before and after the operation, and builds a foundation for the enhancement of the work efficiency and employee capacity. In addition, KHNP developed an online training module, which operates as an e-learning process, on the overview and utilization of a standard engineering model to expand the understanding of standard engineering models by plant employees and to secure competitiveness.
Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
International Journal of Fuzzy Logic and Intelligent Systems
/
v.2
no.2
/
pp.95-99
/
2002
The Loose Part Monitoring System(LPMS) has been designed to detect. locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal. Rising time. Half period. and Global time, they are used as the inputs to neural network . Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising clime. Half Period amplitude. The result shored that the neural network would be applied to LPMS. Also, applying the neural network to thin practical false alarm data during startup and impact test signal at nuclear power plant, the false alarms are reduced effectively.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.164-175
/
2019
The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for agriculture, and caused water deficit in many irrigation projects. Farmers need to find extra sources of water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue in the irrigation project. The study aims to determine the smart dam operation system to mitigate water shortage in this irrigation project via introduction of machine learning to improve dam operation and irrigation demand estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The input vectors for ANN model are identified base on regression and principal component analysis. The structure of ANN (length of training data, the type of activation functions, the number of hidden nodes and training methods) is determined from the statistics performance between measurements and ANN outputs. On the other hands, the irrigation demand will be estimated by using satellite images, LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) values are estimated from the plant growth stage and soil moisture. The values are calibrated and verified with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in the irrigation project is then estimated from the plant growth stage and soil moisture in the area. With the estimated dam inflow and irrigation demand, the dam operation will manage the water release in the better manner compared with the past operational data. The results show how smart system concept was applied and improve dam operation by using inflow estimation from ANN technique combining with irrigation demand estimation from satellite images when compared with the past operation data which is an initial step to develop the smart dam operation system in Thailand.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.