• Title/Summary/Keyword: Plant process modeling

Search Result 199, Processing Time 0.028 seconds

FDM 3D Printing of Environmental Friendly and High Strength Bio-based PC Filaments for Baby Toys

  • Park, Seong Je;Lee, Ji Eun;Park, Jean Ho;Lyu, Min-Young;Park, Keun;Koo, Myung Sool;Jin, Sun Chul;Kim, Ki Yong;Son, Yong
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.99-104
    • /
    • 2017
  • Due to the depletion of fossil oil and the increasing oil price, bio-plastic is currently topical. Bio-based plastics are synthesized from plant resources, unlike conventional petroleum-based counterparts. Therefore, the former minimizes global warming and reduces carbon dioxide emission. Fossil polycarbonate (PC)has good mechanical and optical properties, but its synthesis requires bisphenol-A and phosgene gas, which are toxic to humans. To address these problems, the fused deposition 3D printing process (hereafter, FDM) is studied using environmentally-friendly and high-strength bio-based PC. A comparisonof the environmental impact and tensile strength of fossil PC versus bio-based PC is presented herein, demonstrating that bio-based PC is more environmentally-friendly with higher tensile strength than fossil PC. The advantages of bio-based PC are applied in the FDM process for the fabrication of environmentally-friendly baby toys.

Intelligent Controller for Constant Control of Residual Chlorine in Water Treatment Process (정수장 잔류염소 일정제어를 위한 지능형 제어기 개발)

  • Lee, Ho-Hyun;Jang, Sang-Bok;Hong, Sung-Taek;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.147-154
    • /
    • 2014
  • In this study, chlorine modeling technique based on fuzzy system is proposed to reduce the carcinogenic substance and decide the optimal chlorine injection rate, which is affected by chlorine evaporation rate in sedimentation basin according to detention time, weather and water quality. The additional chlorine meter is installed in the inlet part of sedimentation to reduce the feedback time and implement cascade control, which leads to maintaining the residual chlorine concentration decided by fuzzy rule. It helps to take a preemptive action about long time delay, the characteristics of the disinfection process, and reduce the variation of residual chlorine rate by 7.3 times and the chlorine consumption by 40,000 dollars. It made a significant contribution to supply hygienically safe drinking water.

Vibration Analysis of Separation Screen in a Recycling Plant of Moisturized Construction Wastes (고함수율의 건설폐기물 폐 토속에 포함된 이물질 선별을 위한 분리스크린의 진동해석)

  • Moon, Byung-Young;Bae, Hyo-Dong;Kwag, Kwang-Hun;Bae, Kee-Sun;Song, Ha-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.526-533
    • /
    • 2008
  • In this study, theoretical super screen vibration analysis has been carried out to predict the dynamic characteristics of interactive waste particles. In order to approach these problems, it is necessary to have a fundamental understanding the screening process and the process of both the remaining and the passed material on a screen with several interacting screen planes based on Soldinger(1999) was discussed. Here, the vibrating screen is composed of three assemblies such as screen, wastes guide, and supported screen as shown in Fig. 1. This model is regarded vibrator as the system of screen fixed tilt plates. Then materials(or particles) of different size is to be separated by using the eccentric vibrator and classifying tilt plates. As well moisturized construction wastes is more efficient to separate than moisture-less it. In processing separate mechanism, the more materials is light, the more staying time is long. Thus much lighter construction wastes(wood, Styrofoam, etc) and heavier materials are separated by staying time delay in a super screen. The design results, separation screen were able to know that small and larger particles are conspicuous difference each motion character according to trajectory particles, and small particles raise the probability in classifying tilt plates.

Development and Validation of Multiple Regression Models for the Prediction of Effluent Concentration in a Sewage Treatment Process (하수처리장 방류수 수질예측을 위한 다중회귀분석 모델 개발 및 검증)

  • Min, Sang-Yun;Lee, Seung-Pil;Kim, Jin-Sik;Park, Jong-Un;Kim, Man-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.312-315
    • /
    • 2012
  • In this study, the model which can predict the quality of effluent has been implemented through multiple regression analysis to use operation data of a sewage treatment plant, to which a media process is applied. Multiple regression analysis were carried out by cases according to variable selection method, removal of outliers and log transformation of variables, with using data of one year of 2011. By reviewing the results of predictable models, the accuracy of prediction for $COD_{Mn}$ of treated water of secondary clarifiers was over 0.87 and for T-N was over 0.81. Using this model, it is expected to set the range of operating conditions that do not exceed the standards of effluent quality. In conclusion, the proper guidance on the effluent quality and energy costs within the operating range is expected to be provided to operators.

Development of Optimal Chlorination Model and Parameter Studies (최적 염소 소독 모형의 개발 및 파라미터 연구)

  • Kim, Joonhyun;Ahn, Sooyoung;Park, Minwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.6
    • /
    • pp.403-413
    • /
    • 2020
  • A mathematical model comprised with eight simultaneous quasi-linear partial differential equations was suggested to provide optimal chlorination strategy. Upstream weighted finite element method was employed to construct multidimensional numerical code. The code was verified against measured concentrations in three type of reactors. Boundary conditions and reaction rate were calibrated for the sixteen cases of experimental results to regenerate the measured values. Eight reaction rate coefficients were estimated from the modeling result. The reaction rate coefficients were expressed in terms of pH and temperature. Automatic optimal algorithm was invented to estimate the reaction rate coefficients by minimizing the sum of squares of the numerical errors and combined with the model. In order to minimize the concentration of chlorine and pollutants at the final usage sites, a real-time predictive control system is imperative which can predict the water quality variables from the chlorine disinfection process at the water purification plant to the customer by means of a model and operate the disinfection process according to the influent water quality. This model can be used to build such a system in water treatment plants.

Estimate and Environmental Assessment of Greenhouse Gas(GHG) Emissions and Sludge Emissions in Wastewater Treatment Processes for Climate Change (기후변화를 고려한 하수처리공법별 온실가스 및 슬러지 배출량 산정 및 환경성 평가)

  • Oh, Tae-Seok;Kim, Min-Jeong;Lim, Jung-Jin;Kim, Yong-Su;Yoo, Chang-Kyoo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.187-194
    • /
    • 2011
  • In compliance with an international law about the ocean dumping of the sludge, the proper sewage treatment process which occurs from the wastewater treatment process has been becoming problem. Generally the sewage and the sludge are controlled from anaerobic condition when the sewage is treated and land filled, where the methane$(CH_{4})$ and the nitrous oxide $(N_{2}O)$ from this process are discharged. Because these gases have been known as one of the responsible gases for global warming, the wastewater treatment process is become known as emission sources of green house gases(GHG). This study is to suggest a new approach of estimate and environmental assessment of greenhouse gas emissions and sludge emissions from wastewater treatment processes. It was carried out by calculating the total amounts of GHG emitted from biological wastewater treatment process and the amount of the sludgegenerated from the processes. Four major biological wastewater treatment processes which are Anaerobic/Anoxic/Oxidation$(A_{2}O)$, Bardenpho, Virginia Initiative Plant(VIP), University of Cape Town(UCT)are used and GPS-X software is used to model four processes. Based on the modeling result of four processes, the amounts of GHG emissions and the sludge produced from each process are calculated by Intergovernmental Panel on Climate Change(IPCC) 2006 guideline report. GHG emissions for water as well as sludge treatment processes are calculated for environmental assessment has been done on the scenario of various sludge treatments, such as composting, incineration and reclamation and each scenario is compared by using a unified index of the economic and environmental assessment. It was found that Bardenpho process among these processes shows a best process that can emit minimum amount of GHG with lowest impact on environment and composting emits the minimum amount of GHG for sludge treatment.

Dynamic modeling of LD converter processes

  • Yun, Sang Yeop;Jung, Ho Chul;Lee, In-Beum;Chang, Kun Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1639-1645
    • /
    • 1991
  • Because of the important role LD converters play in the production of high quality steel, various dynamic models have been attempted in the past by many researchers not only to understand the complex chemical reactions that take place in the converter process but also to assist the converter operation itself using computers. And yet no single dynamic model was found to be completely satisfactory because of the complexity involved with the process. The process indeed involves dynamic energy and mass balances at high temperatures accompanied by complex chemical reactions and transport phenomena in the molten state. In the present study, a mathematical model describing the dynamic behavior of LD converter process has been developed. The dynamic model describes the time behavior of the temperature and the concentrations of chemical species in the hot metal bath and slag. The analysis was greatly facilitated by dividing the entire process into three zones according to the physical boundaries and reaction mechanisms. These three zones were hot metal (zone 1), slag (zone 2) and emulsion (zone 3) zones. The removal rate of Si, C, Mn and P and the rate of Fe oxidation in the hot metal bath, and the change of composition in the slag were obtained as functions of time, operating conditions and kinetic parameters. The temperature behavior in the metal bath and the slag was also obtained by considering the heat transfer between the mixing and the slag zones and the heat generated from chemical reactions involving oxygen blowing. To identify the unknown parameters in the equations and simulate the dynamic model, Hooke and Jeeves parttern search and Runge-Kutta integration algorithm were used. By testing and fitting the model with the data obtained from the operation of POSCO #2 steelmaking plant, the dynamic model was able to predict the characteristics of the main components in the LD converter. It was possible to predict the optimum CO gas recovery by computer simulation

  • PDF

$CO_2$ Removal Process Analysis and Modeling for 300MW IGCC Power Plant (300MW급 IGCC Power Plant용 $CO_2$ 제거공정 분석 및 모델링)

  • Jeon, Jinhee;Yoo, Jeongseok;Paek, Minsu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.130.2-130.2
    • /
    • 2010
  • 2020년까지 대형 CCS (Carbon Capture and Storage) Demo Plant 시장 (100MW 이상) 이 형성될 전망이다. 발전 부문에서 대규모 CCS 실증 프로젝트는 총 44개이며 연소전(41%), 연소후(28%), 순산소(3%) 프로젝트가 계획되어 있다. 순산소 연소 기술은 실증진입단계, 연소후(USC) 기술은 상용화 추진단계, 연소전 (IGCC) 기술은 실증완료 이후 상용화 진입 단계이다. IGCC 발전의 석탄가스화 기술은 타 산업분야에 서 상용화 되어있어 기술신뢰성이 높다. IGCC 단위설비 기술 개발을 통한 성능개선 및 비용절감에 대한 잠재력을 가지고 있기 때문에 미래의 석탄발전기술로 고려되고 있다. IGCC 기술은 가장 상용화에 앞서있지만 아직까지 IGCC+CCS 대형 설비가 운전된 사례가 전 세계적으로 없으며 미국 EPRI 등에서 Feasibility Study 단계이다. 현재 국책과제로 수행중인 300MW급 태안 IGCC 플랜트를 대상으로 향후 CCS 설비를 적용했을 경우에 대해 기술 타당성 검증을 목적으로 IGCC+CCS 모델링을 수행하였다. 모델링은 스크러버 후단의 합성 가스를 대상으로 하였다. Water Gas Shift Reaction (WGSR) 공정 및 Selexol 공정을 구성하여 최종 단에서 수소 연료를 생산할 수 있도록 하였다. WGSR 공정은 Co/Mo 촉매반응기로 구성되었다. WGSR 모델링을 통하여 주입되는 스팀량 (1~2 mol-steam/mol-CO) 및 온도 변화 ($220-550^{\circ}C$)에 따른 CO가스의 전환율을 분석하여 경제적인 설계조건을 선정하였다. Selexol 공정은 $H_2S$ Absorber, $H_2S$ Stripper, $CO_2$ Absorber, $CO_2$ Flash Drum으로 구성된다. Selexol 공정의 $CO_2$$H_2S$ 선택도를 분석 하였으며 단위 설비별 설계 조건을 예측하였다. 모델링 결과 59kg/s의 합성가스($137^{\circ}C$, 41bar, 가스 조성은 $CO_2$ 1.2%, CO 57.2%, $H_2$ 23.2%, $H_2S$ 0.02%)가 WGSR Process를 통해 98% CO가 $CO_2$ 로 전환되었다. Selexol 공정을 통해 $H_2S$ 제거율은 99.9%, $CO_2$제거율은 96.4%이었고 14.9kg/s의 $H_2$(86.9%) 연료를 얻었다. 모델링 결과는 신뢰성 검증을 통해 IGCC+CCS 전체 플랜트의 성능예측과 Feasibility Study를 위한 자료로 활용될 예정이다.

  • PDF

Risk Management for Ammonia Unloading and Storage Tank Facility (암모니아 입하 및 저장시설에서의 위험도 관리)

  • Jeong, Yun Seo;Woo, In Sung;Lim, Jong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.95-103
    • /
    • 2017
  • A lot of hazardous materials have been used for product processing and utility plant. Many accidents including toxic release, fire and explosions occur in the ammonia related facility and plant. Various safety and environment management program including PSM, SMS, ORA etc. are being implemented for risk management and accident prevention in the production industry. Also much study and research have been carried about risk assessment of accident scenario in the academic and research area. In this paper, firstly risk level was assessed by using a typically used KORA program and LOPA PFD method for the selected ammonia unloading and storage facility. And then risk reduction measures for the risk assessed facility were studied in 3 aspects and some measures were proposed. Those Risk Reduction measures are including a leak detection and emergency isolation, water spray, dilution tank, dike and trench, scattering protection in hardware impovement aspect, and a applicable risk criteria, conditional modifier for existing LOPA PFD, alternative supporting modeling program in risk estimation methodology aspect, and last RBPS(Risk Based Process Safety) program, re-doing of process hazard analysis, management system compliance audit in managerial activity aspect.

Time Change in Spatial Distributions of Light Interception and Photosynthetic Rate of Paprika Estimated by Ray-tracing Simulation (광 추적 시뮬레이션에 의한 시간 별 파프리카의 수광 및 광합성 속도 분포 예측)

  • Kang, Woo Hyun;Hwang, Inha;Jung, Dae Ho;Kim, Dongpil;Kim, Jaewoo;Kim, Jin Hyun;Park, Kyoung Sub;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • To estimate daily canopy photosynthesis, accurate estimation of canopy light interception according to a daily solar position is needed. However, this process needs a lot of cost, time, manpower, and difficulty when measuring manually. Various modeling approaches have been applied so far, but it was difficult to accurately estimate light interception by conventional methods. The objective of this study is to estimate the spatial distributions of light interception and photosynthetic rate of paprika with time by using 3D-scanned plant models and optical simulation. Structural models of greenhouse paprika were constructed with a portable 3D scanner. To investigate the change in canopy light interception by surrounding plants, the 3D paprika models were arranged at $1{\times}1$ and $9{\times}9$ isotropic forms with a distance of 60 cm between plants. The light interception was obtained by optical simulation, and the photosynthetic rate was calculated by a rectangular hyperbola model. The spatial distributions of canopy light interception of the 3D paprika model showed different patterns with solar altitude at 9:00, 12:00, and 15:00. The total canopy light interception decreased with an increase of surrounding plants like an arrangement of $9{\times}9$, and the decreasing rate was lowest at 12:00. The canopy photosynthetic rate showed a similar tendency with the canopy light interception, but its decreasing rate was lower than that of the light interception due to the saturation of photosynthetic rate of upper leaves of the plants. In this study, by using the 3D-scanned plant model and optical simulation, it was possible to analyze the light interception and photosynthesis of plant canopy under various conditions, and it can be an effective way to estimate accurate light interception and photosynthesis of plants.