• Title/Summary/Keyword: Plant pigments

Search Result 131, Processing Time 0.025 seconds

LIGHT-DEPENDENT CHANGES OF CHLOROPHYLL FLUORESCENCE AND XANTHOPHYLL CYCLE PIGMENTS IN MAIZE LEAVES DURING DESICCATION

  • Xu, Chang-Cheng;Lee, Choon-Hwan;Zou, Qi
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 1998
  • Changes of chlorophyll fluorescence and xanthophyll cycle pigment contents in maize leaves were investigated dunng desiccation in darkness or in the light. In darkness, a drastic dehydration of detached maize leaves down to 50% relative water content (RWC) affected photochemical efficiency of photosystem II (Fv/Fm) and pht)tochemical quenching (qP) only slightly. In contrast, desiccation in the light with a moderate intensity led to a pronounced reduction in Fv/Fm with a Fo quenching when RWC was greater than 70%. This reduction in Fv/Fm could be recovered in darkness under hutrod condition. In leaves with RWC below 70%, significant reduction in Fv/Fm was accompanied by an increase of Fo, which could not be reversed within 5 h in darkness under humid condition. The nonphotochemical quenching increased during desiccation in the light with a concomitant rise in zeaxanthin at the expense of violaxanthin. Pretreatment with dithiothreitol (DTT), an inhibitor of zeaxanthin synthesis, inhibited the development of nonphotochemical quenching and prevented the xanthophyll interconversion during desiccation in the light. These results suggest that even light with a moderate intensity becomes excessive under dehydration and zeaxanthin-associated photoprotection of photosynthetic apparatus against photodamage is involved, but the protection is not complete against severe desiccation.

  • PDF

Mordanting Effects on the Dyeing Properties of Noni Root Extracts on Silk Fabrics (노니 뿌리 추출물의 매염제 및 매염 조건별 실크 염색성 고찰)

  • Choi, Joong Hwan;Hong, Umji;Choi, Ran;Hong, Sunpyo;Koh, Joonseok
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.242-253
    • /
    • 2014
  • Morinda citrifolia, commercially known as Noni, is a tree that grows widely throughout the Pacific, and is recognized as one of the most significant sources of traditional medicines among Pacific Island societies. All parts of the plant have traditional and/or modern uses, including roots and bark(dyes, medicine), trunks(firewood, tools), and leaves and fruits(food, medicine). The bark and the roots of the tree contain red and yellow pigments respectively, which are both used in the manufacture of dyes. Dyes from Noni are being used traditionally, to color clothing and fabrics. In this study, mordanting effects on the dyeing properties of Noni root extract on silk fabrics were investigated.

Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity (토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구)

  • Yoo, Sung-Je;Lee, Shin Ae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

Characterization of Albino Tobaccos (Nicotiana tabacum L.) Derived from Leaf Blade-Segments Cultured in vitro

  • Bae, Chang-Hyu;Tomoko Abe;Lee, Hyo-Yeon;Kim, Dong-Cheol;Min, Kyung-Soo;Park, Kwan-Sam;Tomoki Matsuyama;Takeshi Nakano;Shigeo Yoshida
    • Journal of Plant Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.101-107
    • /
    • 1999
  • The leaf blade-segments of albino tobacco (Nicotiana tabacum L.) were cultured on MS media containing different concentrations of BAP (0, 0.4, 2.2, 4.4, 22.2 ${\mu}{\textrm}{m}$) with or without NAA (0, 0.5, 2.7 ${\mu}{\textrm}{m}$). Multiple shoots were induced on the media containing 0.4 to 2.2 ${\mu}{\textrm}{m}$ BAP. The best condition for multiple shoot induction with root formation was MS media containing 4.4 ${\mu}{\textrm}{m}$ BAP and 0.5 ${\mu}{\textrm}{m}$ NAA. The regenerated albino plants showed a significant reduction in accumulation of chlorophylls and carotenoids. The drastic reduction of the pigments content was associated with the distinct alterations in gene expression in the albino plants. firstly, the expression of plastid genes, such as rbcL, psbA, 165 rDNA and 235 rDNA, was reduced at the level of transcripts in the regenerated albino plants. Secondly, the alteration of structure of the plastid genes was not detected in the albino plants. However, the copy number of the plastid genes whose transcription level was reduced greatly was increased approximately two-fold, although the transcriptions of nuclear gene (255 rDNA) showed the wild-type level.

  • PDF

Rapid Isolation of Cyanidin 3-Glucoside and Peonidin 3-Glucoside from Black Rice (Oryza sativa) Using High-Performance Countercurrent Chromatography and Reversed-Phase Column Chromatography

  • Jeon, Heejin;Choi, Janggyoo;Choi, Soo-Jung;Lee, Chang Uk;Yoon, Shin Hee;Kim, Jinwoong;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.30-33
    • /
    • 2015
  • Anthocyanins are water soluble plant pigments which are responsible for the blue, red, pink, violet colors in several plant organs such as flowers, fruits, leaves and roots. In recent years, anthocyanin-rich foods have been favored as dietary supplements and health care products due to diverse biological activities of anthocyanins including antioxidant, anti-allergic, anti-diabetic, anti-microbial, anti-cancer and preventing cardiovascular disease. High-performance countercurrent chromatography (HPCCC) coupled with reversed-phase medium pressure liquid chromatography (RP MPLC) method was applied for the rapid and efficient isolation of cyanidin 3-glucoside (C3G) and peonidin 3-glucoside (P3G) from black rice (Oryza sativa L., Poaceae). The crude black rice extract (500 mg) was subjected to HPCCC using two-phase solvent system composed of tert-butyl methyl ether/n-butanol/ acetonitrile/0.01% trifluoroacetic acid (TBME/B/A/0.01% TFA, 1 : 3 : 1 : 5, v/v, flow rate - 4.5 mL/min, reversed phase mode) to give enriched anthocyanin extract (37.4 mg), and enriched anthocyanin extract was sequentially chromatographed on RP-MPLC to yield C3G (16.5 mg) and P3G (8.7 mg). The recovery rate and purity of isolated C3G were 76.0% and 98.2%, respectively, and those of P3G were 58.3% and 96.3%, respectively. The present study indicates that HPCCC coupled with RP-MPLC method is more rapid and efficient than multi-step conventional column chromatography for the separation of anthocyanins.

Blue Light Effect on the Fatty Acid Composition of Membrane Lipid of Plant Leaves (식물 세포막의 지방산 조성에 미치는 고강도 청색광선의 효과)

  • Jung, Bo-Kung;Kim, Chang-Sook;Jung, Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.261-268
    • /
    • 1992
  • The membranes of mitochondria and chloroplasts contain a number of pigments that can act as endogenous sensitizers to produce activated oxygen species, most efficiently in blue light, which, in turn, attack functional targets in membranes. Therefore, intense blue light from the sun can exert various adverse effects on the functional and structural integrity of the membranes: one of the biochemical events of these negative effects could be the oxidative degradation of the unsaturated fatty acid constituents of membrane polar lipid. It may be assumed that as a strategy to avoid the light induced fatty acid degradation in membranes plant cells, responding to high intensity blue light, change the fatty acid compositions of membrane lipid in such that more-unsaturated fatty acid constituents are replaced by lessunsaturated fatty acid constituents. The results obtained in the present study, most importantly the measurements of double bond index of membrane polar lipid in concert with other measurements such as light quaility-dependent membrane peroxidation and the activities of membrane-bound proteins, seem to support this assumption.

  • PDF

Contents of low molecular weight antioxidants in the leaves of different sweetpotato cultivars at harvest (고구마 품종별 수확시기 잎의 저분자항산화물질 함량분석)

  • Ahn, Young-Ock;Kim, Sun-Ha;Lee, Haeng-Soon;Lee, Joon-Seol;Ma, Daifu;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.214-218
    • /
    • 2009
  • Sweetpotato [Ipomoea batatas (L.) Lam] leaves are excellent source of low molecular weight antioxidants such as polyphenols, anthocyanins and carotenoids compared to other leafy vegetables. Endogenous antioxidants in sweetpotato help our bodies to prevent ageing, heart diseases and cancer. In this study, to develop the proper cultivars for the functional feed materials, we investigated the contents of anthocyanin, $\beta$-carotene, and polyphenols as well as DPPH radical scavenging activity in leaves of 14 different cultivars at the time of the harvest. They showed a diverse antioxidation activity. In DPPH radical scavenging activity, cultivars of Nanjing 9, Yulmi and Shinzami showed higher activity, whereas cv. Huiza 6 showed the lowest. Cultivars of Shinzami and Shinhwangmi had the highest anthocyanin (3.5 mg/g fr wt) and polyphenol (15.8 mg/g fr wt) content, respectively. Interestingly, there was a high correlation between cultivars with colorful pigments in storage roots and antioxidants activity in leaves. These results suggest that sweetpotato leaves with high antioxidant activity at harvest would be suitable for functional feed materials.

Effect of Nitrogen Source on Cell Growth and Anthocyanin Production in Callus and Cell Suspension Culture of 'Sheridan' Grapes

  • Kim, Seung-Heui;Kim, Seon-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.83-89
    • /
    • 2002
  • To establish in vitro mass production system of grape anthocyanin pigments through callus and cell suspension culture, the effects of nitrogen amount and the ratio of $NO_3^-$/$NH_4^+$ in the medium on cell growth and anthocyanin production were investigated. Total nitrogen amount and the ratio of $NO_3^-$/$NH_4^+$ in the medium strongly affected anthocyanin production and cell growth. When $NH_4^+$ was fixed, the cell growth was promoted by 50 mM total nitrogen (20 mM $NO_3^-$ : 30 mM $NH_4^+$ ) than other nitrogen combinations, and was strongly inhibited when $NO_3^-$ was lacking (0 mM $NO_3^-$ : 60 mM $NH_4^+$ ) while anthocyanin production was increased. When $NO_3^-$ was fixed, the cell growth was promoted by 70 mM total nitrogen (40 mM $NO_3^-$ : 30 mM $NH_4^+$) than other nitrogen combinations, and was strongly inhibited when $NO_3^-$ was lacking (0 mM $NO_3^-$ : 60 mM $NH_4^+$ ) while anthocyanin production was increased. Cell growth was gradually increased by all nitrogen combinations, but anthocyanin production reached its peak on day 4 in culture. Anthocyanin content increased with decreasing cell density. Sucrose was rapidly hydrolyzed to fructose and glucose within 4 days. Glucose and fructose concentrations in the medium increased and peaked at the 4th day. The anthocyanin content of $NH_4^+$-free 2% sucrose media was 2 times (200 $\mu\textrm{g}$/g) higher than that of 1% sucrose. When $NO_3^-$ was lacking, the highest anthocyanin production was observed at 4% sucrose after 12 days of culture, and increased along with the sucrose concentration.

Quality Characteristics and Antioxidant Activities of Lotus (Nelumbo nucifera Gaertn.) Sprouts Grown Under Different Conditions

  • Lim, Seo-Hyeon;Kim, So-Hyeon;Park, Jae-Jung;Park, Yong-Sung;Dhungana, Sanjeev Kumar;Kim, Il-Doo;Shin, Dong-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.666-674
    • /
    • 2020
  • Lotus (Nelumbo nucifera Gaertn.) is an economically important aquatic ornamental herb with multiple uses, including food, tea, natural pigments, and/or healthcare product. The objective of this study was to evaluate the physicochemical properties and antioxidant potential of lotus sprouts grown in three media: sprouting machine (LSSG), soil (LSSC), and mud (LSMC). The longest sprout was obtained in LSMC (4.79 and 26.79 cm) followed by LSSC (1.95 and 5.4 cm), and LSSG (0.60 and 2.85 cm) at 5 and 10 days, respectively. Higher amounts of total free amino acids were found in cotyledons (33.96, 21.45, and 38.90 mg/g) than in hypocotyls (15.77, 7.90, and 15.29 mg/g ) for LSSG, LSSC, and LSMC, respectively. The ratios of total essential to total non-essential amino acids were higher in hypocotyls (0.36, 0.31, and 0.46) than in cotyledons (0.34, 0.25, and 0.40), respectively. Similarly, the total polyphenol content of the hypocotyl of LSMC (50.33 ㎍ GAE/g) was the highest and that of the husk of LSSG (24.08 ㎍ GAE/g) was the lowest. Overall, the antioxidant potential of hypocotyl was higher than that of husk and cotyledon. The results indicated that the lotus sprouts grown in mud could be a good source of nutritional and natural antioxidants.

Production and Identification of Anthocyanin in Hairy Root Cultures of Ginseng (인삼 모상근 배양에 의한 Anthocyanin의 생산과 동정)

  • Ko, Kyeong-Min;Choi, Yang-Soon;Hwang, Baik
    • Journal of Plant Biology
    • /
    • v.37 no.1
    • /
    • pp.85-91
    • /
    • 1994
  • In hairy root cultures of ginseng (Panax ginseng C.A. Meyer) transfonned by Agrobacterium rhizogenes, the effects of light, carbon source and various honnone on hairy root growth and anthocyanin production were investigated. Anthocyanin synthesis began to first occur 5 days after exposure to light, and then maximum yield of anthocyanin was 0.36 mg/g(fr wt) in MS medium after 30 days. Of the nutritional factors concentration of 60 mM nitrogen and sucrose as a carbon source showed marked effects on the growth and anthocyanin productiom MS medium supplemented with 0.5 mg/L IAA was most suitable for the hairy root proliferation, and the best accumulation of anthocyanin was obtained at 1 mg/L IAA treatment (0.41 mg/g, fr wt). Whereas 2,4-D tended to restrain the pigment synthesis. From the isolation and identification of anthocyanin pigments, main anthocyanin in ginseng hairy root was identified as pelargonidin-glucoside.coside.

  • PDF