• Title/Summary/Keyword: Plant growth effect

Search Result 3,371, Processing Time 0.032 seconds

Plant Growth Promotion by Isolated Strain of Bacillus subtilis for Revegetation of Barren Lakeside Area (호안나대지 식생복원을 위한 Bacillus subtilis 분리균주의 식물생장 촉진능)

  • Kim, Kyung-Mi;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • Rhizobacterial strain isolated from barren soil, Bacillus subtilis RFO41 exhibits a high level of phosphate solubilizing activity and produces some phytohormones. Its promoting effect on the growth of Xanthium italicum Moore, a wild plant growing at lakeside barren land and thus a good candidate plant for revegetation of barren lakeside was evaluated in the in situ test for 19 weeks at Lake Paro, Kangwon-do. Strain RFO41 could enhance the dry weight of X. italicum by 67.7%. It also increased the shoot length of X. italicum plant by 21.1% compared to that of uninoculated control. Both growth enhancements had statistical significance. However, the inoculation did not show any effect on the root growth, which might be due to the breakage of tiny root. Denaturing gradient gel electrophoresis analysis showed that the inoculated bacteria were maintained in the soils, and the indigenous bacterial community did not exhibit any significant change. This plant growth promoting capability may be utilized as an environment-friendly and low cost revegetation method, especially for the sensitive areas such as barren lakeside lands.

Isolation and Characterization of Various Strains of Bacillus sp. having Antagonistic Effect Against Phytopathogenic Fungi (식물 병원성 곰팡이에 길항작용을 갖는 다양한 Bacillus sp.의 균주 분리와 특성에 관한 연구)

  • Kim, Hee Sook;Kim, Ji-Youn;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.603-613
    • /
    • 2019
  • This study was carried out to examine the antagonistic effect against phytopathogenic fungi of isolated strains from soil samples collected from Busan, Changwon, and Jeju Island: Botrytis cinerea, Colletotrichum acutatum, Corynespora cassiicola, Fusarium sp., Rhizoctonia solani, Phytophthora capsici, and Sclerotinia sclerotiorum. According to results of our studies, isolated strains showed an antagonistic effect against phytopathogenic fungi. Such an antagonistic effect against phytopathogenic fungi is seen due to the production of siderophores, antibiotic substances, and extracellular amylase, cellulase, protease, and xylanase enzyme activities. Extracellular enzymes produced by isolated strains were significant, given that they inhibited the growth of phytopathogenic fungi by causing bacteriolysis of the cell wall of plant pathogenic fungi. This is essential to break down the cell wall of plant pathogenic fungi and thus help plant growth by converting macromolecules, which cannot be used by the plant for growth, into small molecules. In addition, they are putative candidates as biological agents to promote plant growth and inhibit growth of phytopathogenic fungi through nitrogen fixation, indole-3-acetic acid production, siderophore production, and extracellular enzyme activity. Therefore, this study suggests the possibility of using Bacillus subtilis ANGa5, Bacillus aerius ANGa25, and Bacillus methylotrophicus ANGa27 as new biological agents, and it is considered that further studies are necessary to prove their effect as novel biological agents by standardization of formulation and optimization of selected effective microorganisms, determination of their preservation period, and crop cultivation tests.

Growth Control in 'New Guinea' Impatiens (Impatiens hawkeri hybrida) by Treatments of Plant Growth Retardants and Triazole Fungicides (식물생장억제제와 Triazole계 살균제 처리에 의한 'New Guinea' 임파첸스(Impafiens hawkeri hybrida)의 생육조절)

  • Lee, Seung Woo;Rho, Kyung Hee
    • Horticultural Science & Technology
    • /
    • v.18 no.6
    • /
    • pp.827-833
    • /
    • 2000
  • This study was carried out to investigate the effect of plant growth retardants (daminozide, chlormequat, uniconazole, paclobutrazole) and fungicides of triazole chemical (hexaconazole, microbutanil, difenoconazole, terbuconazole, bitertanol) on the growh of 'New Guinea' impatiens. Plant height and canopy were decreased by all kinds of plant growth retardants tested in both 'Anguilla' and 'Papete'. Especially, uniconazole and paclobutrazole were most effective in inhibition of top growth. However, the content of chlorophyll increased at all treatments of plant growth retardants and stem diameter tended to be increased at the highest concentration of all kinds of plant growth retardants tested. The results in all cultivars tested, with the experiment of triazole fungicides, were similar to the results of experiment with plant growth retardants. These results suggest that fungicides of triazole chemical such as hexaconazole, microbutanil, difenoconazole, terbuconazole and bitertanol can be used for the promotion of quality in potted 'New Guinea' impatiens.

  • PDF

Effects of Substrates Supplemented with Crushed Shell, Elvanite and bioceramic on the Growth of Rice(Oryza sativa L.) (패화석, 맥반석 및 바이오세라믹의 혼입처리 벼의 생육에 미치는 영향)

  • 박순기;김홍기;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.1
    • /
    • pp.127-132
    • /
    • 1997
  • This experiment was carried out to examine the effect of various functional materials such as bioceramic podwers, crushed shells and elvanites supplemented to the each substrate on the seedlings growth of rices. The rice seedlings were grown in pots filled with substrates supplemented with bioceramic podwers, crushed shells and elvanites. The growth of rice seedlings in terms of plant height, stem diameter, root length and leaf width, plant fresh and dry weight was promoted by adding the bioceramic powders (2 to 3g/kg), crushed shells (10g/kg) or elvanites (20 to 40g/kg). Plant height was also promoted by the adding of bioceramic powder from 16 days after treatment, whereas crushed shells and elvanites from 10 days after treatment. Especially, root growth was greatly influenced by bioceramic powder, whereas the shoot growth(leaves and stem) was stimulated by the crushed shells and elvanites supplemented into each substrate. In the field, plant growth in terms of plant height, leaf length and leaf width were also influenced by crushed shells and elvanites at 74 days after treatment. The growth of rices in terms of tiller number, spikelets, panicles and spikelets/panicle was incresed by adding the crushed shells and elvanites from 100 to 200g per m2.

  • PDF

Effect of Plant Growth Regulators on Fruit Enlargement and Optimal Harvest Time in Sageretia thea (Osback) M. C. Johnst (생장조정제 처리가 상동나무 열매의 비대와 수확시기에 미치는 영향)

  • Song, Sang Churl;Song, Chang Khil;Kim, Ju Sung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2015
  • This study had been conducted to investigate the effect of some plant growth regulators inducing fruit enlargement and optimal harvest time in Sageretia thea. Two hundred fifty $mg/{\ell}$ mepiquat chloride treatment, $1mg/{\ell}$ thidiazuron treatment on full bloom, and $200mg/{\ell}$ gibberellic acid treatment on 7 days before full bloom resulted in the increase of 21.7% in weight, and $200mg/{\ell}$ gibberellic acid treatment 7 days before full bloom, 10$mg/{\ell}$ forchlorfenuron treatment 14 days after full bloom, and $1mg/{\ell}$ thidiazuron treatment on full bloom also brought about positive effects on the enlargement of the fruit, increasing 6.3%, 6.3% and 8.1% in its transverse diameter, respectively. Furthermore, the effects of the plant growth regulator treatments on the harvest time of Sageretia thea were determined as follows: the increase in the optimal harvest time of 57.2 - 75.4%, shorter maturation period, by the treatments with $500mg/{\ell}$ mepiquat chloride 7 days after full bloom, $100mg/{\ell}$ gibberellic acid treatment on full bloom, $2.5mg/{\ell}$ forchlorofenuron 7 days after full bloom and $2mg/{\ell}$ thidiazuron treatment 7 days before full bloom; and the greater effects of plant growth regulator treatments on the fruit maturation in the following order, gibberellic acid > thidiazuron > forchlorofenuron > mepiquat chloride. The results of this study are expected to be used as a reference data to develop Sageretia thea as a new local specific crop for Jeju island.

Host Plant Management Techniques for the Cultivation of Viscum album var. coloratum (Kom.) Ohwi

  • Lee, Bo Duck;Seo, Hyeong Min;Park, Cheol Ho
    • Korean Journal of Plant Resources
    • /
    • v.29 no.6
    • /
    • pp.650-657
    • /
    • 2016
  • Research has found that the management of the host plant is essential to mistletoe cultivation. A Trunk injection test on the host plant that contained a mixture of indole-3-butryc acid (IBA) and liquid fertilizer was conducted with respect to the improvement of the one year survival rate of mistletoe. As a result, the trunk injection experiments showed the effect of the IBA and liquid fertilizer mixture in all treatments. This mixture was effective to increase the survival rate of mistletoe by 20% with the IBA at 100 mg/L and Hyponex at 100 mg/L. The examination proved that the host plant fertilizer effect was the most effective treatment for organic fertilizer with 60% added NPK (4-2-1). Its effects were higher compared to the control at the length and diameter of one-years-old branches in the host plant, even when the parasitic mistletoe improved its growth in length, diameter, and number of branches. Comparing the control and host plant fertilizer, the latter was the most effective way to process 20 kg per a treatment effect in the experimental site and to process at any time after the inoculation. This treatment is effective to improve the growth of mistletoe by watering the host plant three times per week. Therefore, the management of the host plant is an essential element in the successful cultivation of mistletoe, not only to supply fertilizer and plant hormones to the host plant in the initial inoculation time but also to provide organic fertilizer and irrigation for the host plant.

Plant Growth Promoting Activities of Some Rhizosphere Bacteria and their Effect on Brassica rapa Growth

  • Hussein, Khalid A.;Jung, Yeong Sang;Joo, Jin Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • The necessity to develop economical and eco-friendly technologies is steadily increasing. Plant growth promoting rhizomicrobial strains PGPR are a group of microorganisms that actively colonize plant roots and increase plant growth and yield. Pot experiments were used to investigate the potential of some rhizobacterial strains to enhance the Brassica rapa growth. Microbial strains were successfully isolated from the rhizosphere of Panax ginseng and characterized based on its morphological and plant growth promotion characters. Surface disinfected seeds of Wisconsin Fast B. rapa were inoculated with the selected PGPR microorganisms. The different pots treatments were inoculated by its corresponding PGPR ($10^7cfu\;mL^{-1}$) and incubated in the growth chamber at $25^{\circ}C$ and 65% RH, the light period was adjusted to 24 hours (day). NPK chemical fertilizer and trade product (EMRO, USA) of effective microorganisms as well as un-inoculated control were used for comparison. Plants harvested in 40 days were found to have significant increase in leaf chlorophyll units and plant height and also in dry weight of root and shoot in the inoculated seedlings. Root and shoot length and also leaf surface area significantly were increased by bacterial inoculation in sterile soil. The study suggests that Rhodobacter capsulatus and Azotobacter chroococcum are beneficial for B. rapa growth as they enhance growth and induced IAA production and phosphorus solubilization. This study presents some rhizomicrobial strains that significantly promoted growth of Wisconsin Fast Plant B. rapa in pot experiment under different soil conditions.

Effect of Ribitol and Plant Hormones on Aposymbiotical Growth of the Lichenforming Fungi of Ramalina farinacea and Ramalina fastigiata

  • Wang, Yi;Han, Keon-Seon;Wang, Xin Yu;Koh, Young-Jin;Hur, Jae-Seoun
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.28-30
    • /
    • 2009
  • This study was aimed at evaluating the growth promoting effect of symbiotic algal polyol (ribitol) and plant hormones on the lichen-forming fungi (LFF), Ramalina farinacea (CH050010 and 40403) and Ramalina fastigiata. The addition of ribitol to basal (malt-yeast extract) medium enhanced the relative growth rates of all three LFF. R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (H06127) showed 35.3%, 29.0% and 29.3% higher growth rates, respectively, compared to the control. IBA (indole-3-butyric acid) and TIBA (2,3,5-tridobenzoic acid) also increased growth rates of the LFF by 34 to 64% and 7 to 28%, respectively, compared to the control. The combination of ribitol with IBA or TIBA synergistically increased the growth of all LFF. For example, ribitol and IBA treatments increased growth rates of R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (H06127) by 79.4%, 40.3% and 72.8% in, respectively, compared to those grown on the basal medium. The stimulating effect of ribitol and IBA on the LFF growth induced vertical development of the fungal mass in culture. We suggest that lichen-forming fungal growth of Ramalina lichens can be stimulated aposymbiotically by supplementing polyols and plant hormones to the basal medium in the mass production of lichen secondary metabolites under large scale culture conditions.