• Title/Summary/Keyword: Plant defense

Search Result 526, Processing Time 0.036 seconds

A New Insight of Salt Stress Signaling in Plant

  • Park, Hee Jin;Kim, Woe-Yeon;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.447-459
    • /
    • 2016
  • Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.

Effects of a Powder Formulation of Streptomyces cameroonensis on Growth and Resistance of Two Cocoa Hybrids from Cameroon against Phytophthora megakarya (Causal Agent of Black Pod Disease)

  • Aristide, Dzelamonyuy;Martial, Tene Tayo Paul;Ruth, Ngotcho Ngassam Esther;Grace, Lele Brenda;Ebenezer, Foka Tatiekam;Flore, Magni Pacha Tatiana;Thaddee, Boudjeko
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.160-169
    • /
    • 2022
  • In the present study we evaluated the efficacy of a bioformulation of Streptomyces cameroonensis for control of black pod disease in cocoa and enhancement of seedling growth. The formulation developed using talc powder and cassava starch as carriers showed high shelf-life of 1.07 × 106 CFU/g after six months storage at 4℃. The formulation was tested for inhibition of spore germination in Phytophthora megakarya and showed 100% inhibition at 10% (w/v) of formulation. To determine the efficacy of the formulation, we performed an in planta assay in the greenhouse on two hybrids of cocoa seedlings, the tolerant SNK413 × (♂) T79/467 and the susceptible UPA 134× (♂) SCA 12. Detached leaf assay showed a significant reduction in the disease severity index of about 67% for the tolerant hybrid and 55% for the susceptible hybrid compared to non-treated plants. A significant enhancement in stem length, leaf surface area and root weight was observed. Analysis of biochemical markers of defense showed a significant increase in total polyphenol, flavonoid, and total protein contents. There was also significant upregulation of PR-proteins such as chitinases, peroxidases and β-1, 3-glucanases following treatment of both tolerant and susceptible hybrids, though with a higher level of synthesis in the tolerant hybrids. A significant increase was also observed in polyphenol oxidase activities in plants treated with the formulation. This work demonstrated the stability and effectiveness of the S. cameroonensis powder formulation in suppressing black pod disease in cocoa and subsequently enhancing the growth of seedlings.

Transgenic Peppers by Disease Defense Related CaWRKY114

  • Jung, Min;Lee, Yun-Hee;Kim, Ju-Yeon;Kim, Hyo-Soon;Park, Yoon-Sik;Choi, Soon-Ho;Shim, Dong-Bo;Her, Nam-Han;Lee, Jang-Ha;Yang, Seung-Gyun;Harn, Chee-Hark
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.04a
    • /
    • pp.130-130
    • /
    • 2005
  • PDF

Roles of SUMO in Plants

  • Park, Bong-Soo;Seo, Hak-Soo
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The covalent conjugation of SUMO(Small Ubiquitin-related MOdifier) protein to its substrates regulates numerous cellular processes, including protein stability and activity in eukaryotes as well as in plants. In this present review, we summarize biochemical aspects of SUMO conjugation and deconjugation and the functions of SUMO and sumoylation-related proteins in Arabidopsis and other plants. In particular, we provide an overview of the roles of the SUMO in widely different biological processes including the ABA response, floral induction, pathogen defense, abiotic stresses and hormone signaling. Furthermore, we explore the possible roles of SUMO in embryo and seed development.

  • PDF

Cyanogenic glycosides : Alternative insecticides?

  • Park, Dong-Sik;Coats, Joel R.
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.2
    • /
    • pp.51-57
    • /
    • 2002
  • Cyanogenic glycosides are secondary plant metabolites that are known as plant defense chemicals. They are found in cassava, bamboo, flax, and other plants. In this paper, the role of cyanogenic glycosides, their characteristics, and their interactions with insects are discussed. Previous and current research in our laboratory found that several natural and synthetic cyanohydrins were effective against stored-product insects as fumigants. Due to their insecticidal activity to insects, cyanohydrins can be used as an alternative fumigant and also as soil fumigants. Risk assessment, however, should be done to account for possible environmental problems, non-target wildlife effects, and human health effects.

Papper transformation by disease defense related genes

  • Lee, Yun-Hee;Jung, Min;Shin, Sun-Hee;Kim, Ju-Yeon;Park, Yoon-Sik;Choi, Soon-Ho;Shim, Dong-Bo;Her, Nam-Han;Lee, Jang-Ha;Lee, Mi-Yeon;Ryu, Ki-Hyun;Paek, Kee-Yoeup;Harn, Chee-Hark
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.180-180
    • /
    • 2005
  • PDF

The Effect of Salvia plebeia on Murine Macrophage-mediated Cytotoxicity

  • Um, Sung-Hee;Lee, Kang-Ro;Zee, Ok-Pyo;Pyo, SuhKneung
    • Natural Product Sciences
    • /
    • v.2 no.1
    • /
    • pp.43-47
    • /
    • 1996
  • Macrophages play an important role in host defense against tumors by killing tumor cells. Our work is directed toward studying the effect of the extracts of Salvia plebeia on induction of antitumor activity in macrophages, since it has been usezd as a folk-medicine for the treatment of hepatitis and tumors. The ability of macrophage treated with the plant extracts to inhibit the growth of tumor cells was assessed. The Extracts of the plant induced antitumor activity and could enhance the tumoricidal activity of macrophages when used in combination with $IFN-{\gamma}$. These results suggest that Salvia plebeia extract contain immunomodulatory factors responsible for the induction of the antitumor activity.

  • PDF

The Ozone Stress Transcriptome of Pepper (Capsicum annuum L.)

  • Lee, Sanghyeob;Yun, Sung-Chul
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.197-205
    • /
    • 2006
  • We used cDNA microarrays to monitor the transcriptome of ozone stress-regulated genes (ORGs) in two pepper cultivars [Capsicum annuum cv. Dabotop (ozone-sensitive) and Capsicum annuum cv. Buchon (ozone-tolerant)]. Ozone stress up- or down-regulated 180 genes more than three-fold. Transcripts of 84 of these ORGs increased, transcripts of 88 others diminished, and those of eight either accumulated or diminished at different time points in the two cultivars or changed in only one of the cultivars. 67% (120) of the ORGs were regulated differently in ozone-sensitive and ozone-tolerant peppers, most being specifically up-regulated in the ozone-sensitive cultivar. Many were also represented in the plant defense transcriptome against non-host pathogen infection, and some in the transcriptomes for cold, drought, and salinity stresses.