• Title/Summary/Keyword: Plant configuration

Search Result 261, Processing Time 0.027 seconds

NOx Emission Characteristics Depending on the Variations in Yaw Angle of the Secondary Air Nozzles in a Coal Fired Boiler (연소용 이차공기 수평분사각에 따른 질소산화물(NOx) 배출특성)

  • Kim, Young-Joo;Park, Ho-Young;Lee, Sung-No
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.272-277
    • /
    • 2009
  • Three dimensional numerical analysis for the coal fired boiler has been performed to investigate the effect of yaw angle variation of the secondary air nozzles on the combustion characteristics and NOx emission. It was found that the prediction gives a good agreement with plant data. The increase in yaw angle up to $20^{\circ}$ have results in the decrease in NOx emission at furnace exit and recirculation flow intensity, together with the increase of unburned carbon in ash. It also has been recognized the remarkably change in configuration of fire ball with increase in yaw angle. The results from this study would be valuable in the case of the combustion modification of the corner firing coal-fired utility boiler.

The Characteristics of the Late Neoclassical Style in American Gardens - Focused on the analysis of Dumbarton Oaks by Beatrix Farrand - (미국 후기 신고전주의적 조경양식 특성 - 파란드의 덤바튼 오크(Dumbarton Oaks) 분석을 중심으로 -)

  • Lee, Hyung-Sook;Park, Eun-Yeong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.159-166
    • /
    • 2014
  • Beatrix Farrand was America's first female landscape architect and Dumbarton Oaks in Washington, D.C., USA site of her best known garden design. The purpose of this study is to identify characteristics of the American Neoclassical tendencies in the early 1900s and Farrand's style through an analysis of Dumbarton Oaks. The results of analysis indicated that although Dumbarton Oaks was influenced by many European classic gardens, the garden has the unique style which reflects regional contexts and culture based on the philosophy of arts and crafts movement, The major characteristics of the late Neoclassical style in America can be summarized as follows. First, A series of terraced gardens were connected by paths and stairways and natural terrain was preserved as much as possible. Second, the formal and informal style coexist and the symmetric and asymmetric forms are well-balanced throughout the garden. Third, selection of plant materials and planting methods, influenced by both classical gardens and the Arts and Crafts style in UK, are in harmony with the space configuration and shape.

A Study on the Drum Water Level Versus Incoming Water Quantities for Small Vertical Hydraulic Water Turbine Plant (종축소수력발전소의 인입수량과 드럼수위와의 관계에 관한 연구)

  • Che, Gyu-Shik;Jung, Ju-One
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.254-260
    • /
    • 2014
  • We studied water level rising of drum versus time in the small hydraulic vertical water turbine system in this paper. The water level rises continuously up to a certain point with the passage of time if the constant incoming water is supplied, while it stops rising and maintains equilibrium state without any more rising because it increases position energy and evatually makes outgoing velocity and outgoing water quantities of runner area. The water level of drum is determined independent of size, height, width, figure of drum or runner configuration. It comes out that the water level is dependent only on the incoming and outgoing water quantities, and the output power has similar behavior. Therefore, desirable water level and output power are not available unless incoming water quantities is abundant. We validate this phenomina through applyng our methodolgies to the real small hydraulic vertical water turbine system under constructing and testing in industrial facilities in Korea.

NuSEE: AN INTEGRATED ENVIRONMENT OF SOFTWARE SPECIFICATION AND V&V FOR PLC BASED SAFETYCRITICAL SYSTEMS

  • Koo, Seo-Ryong;Seong, Poong-Hyun;Yoo, Jun-Beom;Cha, Sung-Deok;Youn, Cheong;Han, Hyun-Chul
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.259-276
    • /
    • 2006
  • As the use of digital systems becomes more prevalent, adequate techniques for software specification and analysis have become increasingly important in nuclear power plant (NPP) safety-critical systems. Additionally, the importance of software verification and validation (V&V) based on adequate specification has received greater emphasis in view of improving software quality. For thorough V&V of safety-critical systems, V&V should be performed throughout the software lifecycle. However, systematic V&V is difficult as it involves many manual-oriented tasks. Tool support is needed in order to more conveniently perform software V&V. In response, we developed four kinds of computer aided software engineering (CASE) tools to support system specification for a formal-based analysis according to the software lifecycle. In this work, we achieved optimized integration of each tool. The toolset, NuSEE, is an integrated environment for software specification and V&V for PLC based safety-critical systems. In accordance with the software lifecycle, NuSEE consists of NuSISRT for the concept phase, NuSRS for the requirements phase, NuSDS for the design phase and NuSCM for configuration management. It is believed that after further development our integrated environment will be a unique and promising software specification and analysis toolset that will support the entire software lifecycle for the development of PLC based NPP safety-critical systems.

The Effect of Open Ratio of the Inlet Baffle on Hydraulic Behavior within a Rectangular Sedimentation Basin (장방형 침전지 유입 정류벽 유공비의 지내 수리거동에 미치는 영향 연구)

  • Park, No-Suk;Kim, Seong-Su;Lim, Sung-Eun;Lee, Doo-Jin;Seo, In-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.345-352
    • /
    • 2009
  • The purpose of inlet baffle is to distribute the flow uniformly over the entire cross-sectional area of the sedimentation basin. The goal when designing this baffle is to achieve some head loss while keeping the velocity gradients through the ports equal to the velocity gradient in the end of the flocculator, so as to not break up the flocs. Sedimentation tank performance is strongly influenced by hydrodynamic and physical effects such as inlet design. This study was conducted to evaluate the effect of open ratio of the inlet baffle on hydraulic behavior within a rectangular sedimentation basin using CFD simulation and ADV technique. In order to verify the CFD simulation, we measured the factual velocity at 18 points in the full-scale sedimentation basin at Y water treatment plant. Good agreement was obtained between the CFD predictions and the experimentally measured data. From the simulation results of the existing basin with 7.4 % open ratio, it was investigated that extreme decrease in velocity occurred in the middle of basin. Since then, flow features was unstable. The region which the velocity decrease rapidly moved forward to the flow direction in proportion to the increase of inflow velocity. Also, it was investigated that the flow characteristic of 6.0 % open ratio was significantly different from 7.4 % open ratio at the same configuration condition. These results are a clear indication that inflow momentum and open ratio are the parameters affecting the characteristics of hydraulic patterns. The influence of these parameters on the sedimentation performance requires further study.

Optimal Design of Submarine Pipeline for Intake and Discharge of Seawater Desalination Facilities (해수 담수화 설비의 취수 및 배출수 해저 배관 최적화 설계)

  • Choi, Gwangmin;Han, Inseop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2017
  • Desalination plants have been recently constructed in many parts of the world due to water scarcity caused by population growth, industrialization and climate change. Most seawater desalination plants are designed with a submarine pipeline for intake and discharge. Submarine pipelines are installed directly on the bottom of the water body if the bottom is sandy and flat. Intake is located on a low-energy shoreline with minimal exposure to beach erosion, heavy storms, typhoons, tsunamis, or strong underwater currents. Typically, HDPE (High Density Polyethylene) pipes are used in such a configuration. Submarine pipelines cause many problems when they are not properly designed; HDPE pipelines can be floated or exposed to strong currents and wind or tidal action. This study examines the optimal design method for the trench depth of pipeline, analysis of on-bottom stability and dilution of the concentrate based on the desalination plant conducted at the Pacific coast of Peru, Chilca. As a result of this study, the submarine pipeline should be trenched at least below 1.8 m. The same direction of pipeline with the main wind is a key factor to achieve economic stability. The concentrate should be discharged as much as high position to yield high dilution rate.

Study on the Design and Operation Characteristics of Ejector System (이젝터 시스템의 설계 및 작동 특성에 관한 연구)

  • NamKoung, Hyuck-Joon;Han, Poong-Gyoo;Kim, Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.627-630
    • /
    • 2009
  • Ejector system can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an configuration and operating conditions for an ejector in the condition of sonic and subsonic. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Numerical simulation was adopted for an optimal geometry design and satisfying the required performance. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Entrainer-Enhanced Semi-Batch Reactive Distillation for Synthesis of Butyl Acetate (부틸 아세테이트 합성을 위한 공비첨가제 사용 반회분식 반응증류)

  • Yang, Jeongin;Jeon, Hyeongcheol;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.341-352
    • /
    • 2017
  • Butyl acetate is produced from acetic acid and butanol via an esterification reaction in a reactive distillation column. Entrainer can be used for efficient removal of produced water from the reaction region, leading to significant improvement of the column performance. Batch reactive distillation has clear advantages over continuous one in terms of flexibility and adaptability in a small plant. We studied batch and semi-batch reactive distillation processes through process simulation and pilot-scale experiments. We investigated process configuration and type of entrainer for improvement of the column performance and suggested a novel cyclic operation strategy using the semi-batch reactive distillation column. The cyclic strategy was shown to give relatively high production rate and stable operation.

Development of TDMA-Based Protocol for Safety Networks in Nuclear Power Plants (원전 안전통신망을 위한 TDMA 기반의 프로토콜 개발)

  • Kim, Dong-Hoon;Park, Sung-Woo;Kim, Jung-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.303-312
    • /
    • 2006
  • This paper proposes the architecture and protocol of a data communication network for the safety system in nuclear power plants. First, we establish four design criteria with respect to determinability, reliability, separation and isolation, and verification/validation. Next we construct the architecture of the safety network for the following systems: PPS (Plant Protection System), ESF-CCS (Engineered Safety Features-Component Control System) and CPCS (Core Protection Calculator System). The safety network consists of 12 sub-networks and takes the form of a hierarchical star. Among 163 communication nodes are about 1600 origin-destination (OD) pairs created on their traffic demands. The OD pairs are allowed to exchange data only during the pre-assigned time slots. Finally, the communication protocol is designed in consideration of design factors for the safety network. The design factors include a network topology of star, fiber-optic transmission media, synchronous data transfer mode, point-to-point link configuration, and a periodic transmission schedule etc. The resulting protocol is the modification of IEEE 802.15.4 (LR-WPAN) MAC combined with IEEE 802.3 (Fast Ethernet) PHY. The MAC layer of IEEE 802.15.4 is simplified by eliminating some unnecessary (unctions. Most importantly, the optional TDMA-like scheme called the guaranteed time slot (GTS) is changed to be mandatory to guarantee the periodic data transfer. The proposed protocol is formally specified using the SDL. By performing simulations and validations using Telelogic Tau SDL Suite, we find that the proposed safety protocol fits well with the characteristics and the requirements of the safety system in nuclear power plants.

Study on Performance Improvement Air Cooled Condenser Considering Ambient Condition (대기 조건에 따른 공랭식 응축기 성능 저하 개선 연구)

  • Cha, Hun;Ryu, Gwang-Nyeon;Kim, Jung-Rae
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 2015
  • Air cooled condenser for power plant is used at inland area of desert or mountainous area because condenser coolant like sea water is not necessary. However, the performance of air cooled condenser is influenced by ambient condition such as wind speed and air temperature. Therefore, various devices have been designed to improve the performance of air cooled condenser. In this study, the CFD analysis for air cooled condenser was carried out according to wind speed and wind screen configuration. As wind speed increased from 3m/s to 7m/s, the fan flow rate was reduced about 15.76% and the rise of inlet air temperature was 5.55 degree of Celsius. When the suitable wind screen is equipped, the fan flow rate went up about 5.18% and inlet air temperature dropped by 2.08 degree of Celsius in comparison with original case without wind screen at 7m/s wind speed.