• Title/Summary/Keyword: Plant cell

Search Result 3,366, Processing Time 0.036 seconds

Plant Defense Responses Coming To Shape

  • Kwon, Chi-An
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Although still poorly understood, accumulating evidence clearly supports that plants also have a good immune system which have been developed and acquired during the evolution. The lack of specific mobile immune cells like a B or T cell in plants additionally suggests that most plant cells have capacity for defending themselves against numerous pathogens. Rapidly growing advances in understanding plant defense responses implicate that plant and animal immune responses are evolutionarily convergent although their origins are thought to be different. On the basis of recent findings, here current understanding of plant defense responses will be discussed.

Identification of Sugar-Responsive Genes and Discovery of the New Functions in Plant Cell Wall

  • Lee, Eun-Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2007.04a
    • /
    • pp.65-73
    • /
    • 2007
  • The objective of this study is to understand how regulatory mechanisms respond to sugar status for more efficient carbon utilization and source-sink regulation in plants. So, we need to identify and characterize many components of sugar-response pathways for a better understanding of sugar responses. For this end, genes responding change of sugar status were screened using Arabidpsis cDNA arrays, and confirmed thirty-six genes to be regulated by sucrose supply in detached leaves by RNA blot analysis. Eleven of them encoding proteins for amino acid metabolism and carbohydrate metabolism were repressed by sugars. The remaining genes induced by sugar supply were for protein synthesis including ribosomal proteins and elongation factors. Among them, I focused on three hydrolase genes encoding putative $\beta$-galactosidase, $\beta$-xylosidase, and $\beta$-glucosidase that were transcriptionally induced in sugar starvation. Homology search indicated that these enzymes were involved in hydrolysis of cell wall polysaccharides. In addition to my results, recent transcriptome analysis suggested multiple genes for cell wall degradation were induced by sugar starvation. Thus, I hypothesized that enzyme for cell wall degradation were synthesized and secreted to hydrolyze cell wall polysaccharides producing carbon source under sugar-starved conditions. In fact, the enzymatic activities of these three enzymes increased in culture medium of Arabidopsis suspension cells under sugar starvation. The $\beta$-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved condition with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. Further, contents of cell wall polysaccharides especially pectin and hemicellulose were markedly decreased associating with sugar starvation in detached leaves. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These results supported my idea that cell wall has one of function to supply carbon source in addition to determination of cell shape and physical support of plant bodies.

  • PDF

Nitrogen fixation by Rhizobium-Plant cell cultures (식물배양세포(植物培養細胞)-Rhizobium에 의(依)한 질소고정(窒素固定)에 관한 연구)

  • Park, W.C.;Yatazawa, M.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.1
    • /
    • pp.43-46
    • /
    • 1979
  • Curing the studies on the mechanism of the nodule formation and the infection of rhizobia using the continously cultured plant cell tissues, it was found that some calluses possess high nitrogen fixation activity. This experiment was conducted to know the differences among the calluses and the Rhizobia. The results obtained were as follows; 1) In a single inoculation the nitrogenase activity of soybean cell cultures-rhizobium was moderately higher than non-leguminous cell cultures, however, in the mixing inoculation that was reversely found. 2) Host factor, which was characteristics for the nodule formation and the nitrogenase activity, was not appeared generally in the plant cell cultures except for Kuamusume and Toyozuzu in soybean, and Datura in non-leguminous cell cultures. 3) In the 012 rhizoblium cultured on soybean cell cultures and in the 010, 023 and 024 rhizobia cultured on non-leguminous cell cultures the nitrogenase activity higher than the others.

  • PDF

Assessment of direct glycerol alkaline fuel cell based on Au/C catalyst and microporous membrane

  • Yongprapat, Sarayut;Therdthianwong, Apichai;Therdthianwong, Supaporn
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 2014
  • The use of a microporous membrane along with Au/C catalyst for direct glycerol alkaline fuel cell was investigated. In comparison with Nafion 112, the microporous Celgard 3401 membrane provides a better cell performance due to the lower ionic resistance as confirmed by impedance spectra. The single cell using Au/C as anode catalyst prepared by using PVA protection techniques provided a higher maximum power density than the single cell with commercial PtRu/C at $18.65mW\;cm^{-2}$ The short-term current decay studies show a better stability of Au/C single cell. The higher activity of Au/C over PtRu/C was owing to the lower activation loss of Awe. The magnitude of current decay indicates a low problem of glycerol crossover from anode to cathode side. The similar performance of single cell with and without humudification at cathode points out an adequate transport of water through the microporous membrane.

Induction of apoptosis by protein fraction isolated from the leaves of Mirabilis jalapa L on HeLa and Raji cell-line

  • Ikawati, Zullies;Sudjadi, Sudjadi;Elly, Widyaningsih;Puspitasari, Dyah;Sismindari, Sismindari
    • Advances in Traditional Medicine
    • /
    • v.3 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • The leaves of Mirabilis jalapa L contains protein fraction presumed ribosome-inactivating protein (RIP). RIP is a group of protein that has RNA N-glycosidase activity that is capable to inhibit protein synthesis. Protein fraction of the plant was shown to be cytotoxic on HeLa cell-line, however, the mechanism by which the protein kill the cells is not identified yet, whether trough apoptosis, necrosis, or other mechanism. This research aim to study the mechanism of cell death caused by the protein fraction isolated from the leaves of this plant on HeLa and Raji cell-line, as representative of different kind of cancer cells. Results showed that protein fraction isolated from the leaves of Mirabilis jalapa L was more cytotoxic to HeLa cell-line (LC50: 0.65 mg/ml) than to Raji cell-line (1.815 mg/ml) on 48 hours incubation time. Moreover, it was demonstrated that the death of HeLa cells caused by the protein fraction was due to induction of apoptosis, while on Raji cell-line was due to non-apoptosis way, presumably via necrosis.

Enhancement of Chloroplast Transformation Frequency by Using Mesophyll Cells Containing a Few Enlarged Chloroplasts from Nuclear Transformed Plants in Tobacco (적은 수의 거대 엽록체를 가진 핵 형질전환 식물체를 이용한 담배 엽록체 형질전환 빈도 제고)

  • Jeong, Won-Joong;Min, Sung-Ran;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.271-275
    • /
    • 2007
  • In the chloroplast transformation process, a chloroplast containing transformed chloroplast genome copies should be selected over wild-type chloroplasts on selection medium. It is more effective for a cell to become homoplasmic if the cell contains smaller number of chloroplasts. Therefore, to reduce the number of chloroplasts in mesophyll cells in tobacco, we overexpressed FtsZ to generate transgenic plants, of which mesophyll cell contained a few enlarged chloroplasts contrast to a wild-type mesophyll cell containing approximately 100 chloroplasts. It was demonstrated that transgenic leaf tissues comprising cells with a few enlarged chloroplasts gave rise to approximately 40% higher frequency of chloroplast-transformed adventitious shoots.

Growth and Histological Characteristics of Barley (Hordium vulgare L.) Seedling to NaCl Stress (NaCl Stress에 따른 보리 유묘의 생육특성 및 세포학적 반응)

  • Cho, Jin-Woong;Kim, Choong-Soo;Lee, Sok-Young;Park, Ki-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.335-340
    • /
    • 1998
  • This study was conducted to determine the morphological responses of barley seedlings to NaCl stress and to investigate histological changes of cells with transmission electron microscope(TEM) after NaCl stress. Plant height and root length of 10-day old barley seedlings with NaCl stress were reduced and inhibition level was found to be more severe in the plant height than in the root length. The leaf length, leaf width and leaf area were shorter as well with NaCl stress than without NaCl stress. However, there was no difference in the number of roots between NaCl treatments. The weight of dry matter decreased at higher NaCl concentrations, especially at 100mM NaCl. The water content of shoots tend to decrease at higher NaCl concentrations, but there was no difference in the water content of roots, The reduced sugar content was greatly increase than starch. Cellulose content was higher in NaCl stressed-plant than control, and tended to decreased at higher NaCl concentrations. Lignin content also decreased NaCl stressed-plant but there was no tendency at NaCl stress concentrations. Electric conductivity of cell sap with seedlings was high with NaCl stressed-plant. Amount of cell sap gradually increased with time in the roots than in the shoots, The grana of chloroplasts was changed by 150mM NaCl concentration. The christe of mitochondria in root meristematic sells ruined in structure and cell wall of leaf and root was also ruined by NaCl stress.

  • PDF

Identification of Lactic Acid Bacteria in Kimchi Using SDS-PAGE Profiles of Whole Cell Proteins

  • Kim, Tae-Woon;Jung, Sang-Hoon;Lee, Ji-Yeon;Choi, Sun-Kyu;SUN-HEE-PARK;JAE-SUN-JO
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.119-124
    • /
    • 2003
  • This study was conducted to evaluate the practical usefulness of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PACE) fingerprinting of whole cell proteins far the identification of lactic acid bacteria in Kimchi. SDS- PACE of whole cell proteins of the reference strains and lactic acid bacteria isolated from Kimchi yielded differential banding patterns that were highly specific fingerprints, thus making it possible to identify. Identification of the isolates from Kimchi was achieved by comparing the SDS-PAGE fingerprints of isolates to those of reference strains. In addition, the reliability of SDS-PAGE was examined by comparing the results with those of the APL 50 CHL system assay and 16S rRNA gene sequence. SDS-PACE assay showed a different identity to reference strains, while the APL 50 CHL system and 16S rRNA gene sequence could not distinguish a few strains. Therefore, SDS-PAGE of the whole cell proteins is a specific and a reliable method that will be useful for the identification of lactic acid bacteria in Kimchi to the species level, and can be used as an alternative or complementary identification method.