• 제목/요약/키워드: Plant Tissue

검색결과 1,643건 처리시간 0.03초

옥수수의 색소 발현에 관련된 조직 특이성 조절유전자 R locus에 관하여 (Tissue Specific Gene Regulation of The Anthocyanin Synthesis Regulator Gene R in Maize)

  • 임용표
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.323-347
    • /
    • 1987
  • The R locus of maize in one of several genes that regulate the anthocyanin pigments throughout the body of the plant and seed. The R gene product may regulate pigment deposition by controlling the expression of the flavonoid biosynthetic gene pathway in a tissue-specific manner. To understand the basis for tissue specific regulation and allelic variation at R, the molecular study has been done by cloning a portion of the R complex by transposon tagging with Ac. R specific probe were cloned from the R-nj mutant induced by Ac insertion mutagenesis. From southern analysis of R-r complex using the R-nj probe, the structure of R-r was proposed that R-r containes the three elements, (P)(Q)(S). These elements may organize as the inversion triplication model which (S) sequence was inverted in relation to (P) and (Q). The R-sc derivated from R-mb or R-nj was cloned with R-nj probe, and molecular genetical data showed that R-sc containes tissue specific and tissue nonspecific area, and the sequencing of R-sc are progressed now.

  • PDF

Pre-adaptation to Cu during Plant Tissue Culture Enhances Cu Tolerance and Accumulation in Begonia (Begonia evansiana Andr.)

  • Ahn, Yeh-Jin;Park, Jong-Moon
    • Journal of Ecology and Environment
    • /
    • 제30권3호
    • /
    • pp.271-276
    • /
    • 2007
  • A simple and efficient protocol was developed for culturing Cu-tolerant and Cu-accumulating plants via pre-adaptation to Cu during plant tissue culture. We induced multiple shoots from begonia (Begonia evansiana Andr.) leaf explants on MS medium supplemented with naphtaieneacetic acid and benzyladenine. After 3 months, small plantlets were transferred to MS medium supplemented with $100{\mu}M\;CuCl_2$ for pre-adaptation to Cu and cultured for 5 months. Then, these plantlets were individually planted in pots containing artificial soil. An additional 500 mg of Cu dissolved in 1/4 strength MS solution was applied to each pot during irrigation over the course of 2 months. We planted pre-adapted and control begonias in soil from the II-Kwang Mine, an abandoned Cu mine in Pusan, Korea, to examine their ability to tolerate and accumulate Cu for phytore-mediation. Pre-adapted begonias accumulated $1,200{\mu}g$ Cu/g dry root tissue over the course of 45 days. On the other hand, non-Cu-adapted controls accumulated only $85{\mu}g$ Cu/g dry root tissue. To enhance Cu extraction, chelating agents, ethylenediamine tetraacetic acid (EDTA)-dipotassiun and pyridine-2,6-dicarboxylic acid (PDA), were applied. While the chelating agents did not enhance accumulation of Cu in the roots of control begonias, EDTA application increased the level of Cu in the roots of pre-adapted begonias twofold (to $2,500{\mu}g$ Cu/g dry root tissue). Because pre-adapted begonias accumulated a large amount of Cu, mainly in their roots, they could be used for phytostabilization of Cu-contaminated soils. In addition, as a flowering plant, begonias can be used to create aesthetically pleasing remediation sites.

Enhancement of In Vitro Regeneration of Several Ocimum Species and Varieties

  • Park Chung-Heon;Phippen Winthrop B.;Simon James E.;NamKoong Seung-Bak;Seong Nak-Sul
    • Plant Resources
    • /
    • 제8권3호
    • /
    • pp.275-280
    • /
    • 2005
  • Tissue culture systems to optimize regeneration plant species of Ocimum spp were evaluated as a method to micropropagate individual plants and to better study their biology in vitro. Ocimum species were also evaluated for the production of natural plant products during and following the regeneration process. The primary goal of this project was to enhance the regeneration efficiency of basil. Several factors were examined using different Ocimum species and commercial varieties. The effect of cytokinin combination, activated charcoal, gelling agents, and different carbon sources were investigated. Anthocyanin callus spots were produced only in four varieties among six tested. 'Sweet Dani' showed the best results on anthocyanin accumulation, while 'African beauty', 'Tree basil' and 'Methylcinnamate' produced only a few spots. Shoot regeneration was only achieved from 'Sweet Dani' explants. As the activated charcoal concentration increased, callus formation rate decreased respectively compare to the controls for all varieties. There was a decrease in callus growth with increasing concentration of agar and phytagel.

  • PDF

Chitosan Stimulates Calcium Uptake and Enhances the Capability of Chinese Cabbage Plant to Resist Soft Rot Disease Caused by Pectobacterium carotovorum ssp. carotovorum

  • Jang, Eun-Jung;Gu, Eun-Hye;Hwang, Byoung-Ho;Lee, Chan;Kim, Jong-Kee
    • 원예과학기술지
    • /
    • 제30권2호
    • /
    • pp.137-143
    • /
    • 2012
  • Chinese cabbage plant was grown hydroponically for 4 weeks in order to examine the temporal relationship of calcium concentration of the nutrient solution with calcium content in the leaf tissue and susceptibility of the tissue to soft rot disease by $Pectobacterium$ $carotovorum$ ssp. $carotovorum$ (Pcc). Calcium concentration from 0.5 to 32.0 mM was maintained for 1 week using Hoagland & Arnon solution. The calcium content of the leaf was proportionally increased to the concentration of the nutrient in the solution (r = 0.912). In contrast, the severity of soft rot symptom in the young leaves was inversely related with the amount of calcium supplied to the nutrient solution (r = 0.899). Water-soluble chitosan, prepared by hollow fiber filtration (> 100 kDa) was applied into the nutrient solution from 0.0 to 5,000 ppm. The chitosan of 10 ppm was the most effective to promote calcium uptake of the leaf, showing 155% of the control. The same chitosan solution prohibited most soft rot development of the leaf by Pcc, exhibiting only 53% of the control. Among different molecular weight fractions, chitosan fraction obtained from 30-100 kDa molecular weight cut-off promoted calcium uptake the most up to 163% of the control, and reduced the development of soft rot disease recording merely 36% of the control of the leaf tissue. The results obtained in the present study suggest that large scale production of water-soluble chitosan with an optimum molecular weight and its commercial application to Chinese cabbage production will be important to improve yield and quality of the crop.

Mass Propagation of Vitex negundo L., in vitro

  • Thiruvengadam, Muthu;Jayabalan, Narayanasamypillai
    • Journal of Plant Biotechnology
    • /
    • 제2권3호
    • /
    • pp.151-155
    • /
    • 2000
  • Shoot proliferation was obtained from shoot tips and nodal explants of Vitex negundo L. on MS medium supplemented with either BAP or KIN (0.1-2.0 mg/L) alone or in combination with NAA (0.1 mg/L). The concentrations of cytokinins combined with NAA produced multiple shoots from shoot tips and nodal explants. The highest mean percentage (84.3$\pm$8.0) of shoot multiplication's were observed on nodal explants in the presence of BAP (1.5 mg/L) and NAA (0.1 mg/L) followed by shoot tips (65.0$\pm$5.0). The regenerated shootlets were rooted on MS basal medium IAA, IBA, NAA (0.1-1.5 mg/L). The maximum number of roots (51.0$\pm$2.6) was achieved on the medium containing IBA (1.0 mg/L) followed by other auxins (NAA, IAA). The regenerated plants were successfully transferred to a mixture of vermiculate and soil. About 95% of the plantlets survived when transferred to the field.

  • PDF

干拓地 植物의 無機營養素 蓄積에 對하여 (On the Accumulation of Minerals with the Plant Species in a Reclaimed Land)

  • Min, Byeong Mee
    • The Korean Journal of Ecology
    • /
    • 제13권1호
    • /
    • pp.9-18
    • /
    • 1990
  • For reaserching the factors of plants micro-distribution, accumulation of 5 minerals-total-nitrogen, phosphorus, potassium, sodium and calcium-for 19 plant species was investigated in reclaimed land, in western coast of Korea, In the five minerals, sodium contents were quite different among the species. Plant species were divided into 4 groups based on the sodium accumulation and accumulation site in plant tissue: Na accumultion type above-ground part>below-ground part : Triglochin maritimum, Chenopodium virgatum, Atriplex subcordata, Salicornia herbacea, Suaeda japonica, suaeda asparagoides, Limonium tetragonum, Aster tripolium, Artemisia scoparia, Sonchus brachyotus above-ground partbelow-ground part : Zoysia sinica, amagrostis epigeiosa bove-ground part

  • PDF

고려인삼의 조직배양에 의한 사포닌 생산 (Saponin Production in Tissue Culture of Ginseng (Panax ginseng C.A. Meyer))

  • Choi, Kwang-Tae;Park, Ji-Chang;Ahn, In-Ok
    • Journal of Ginseng Research
    • /
    • 제14권2호
    • /
    • pp.107-111
    • /
    • 1990
  • Ginseng root explants and calli were cultured on modified Murashine and Skoog's media supplemented with different concentrations of organic or inorganic compounds and plant growth requlators to clarify the effects of chemical compositon and plant growth regulators in the medium on the growth of ginseng calli and the production of ginseng saponin. For optimum growth of ginseng calli, the concentrations of 2, 4-D and sucrose were in the range of 1 to 5 mg/l and 1 to 3%, respectively. And it was clarified that sucrose, nitrogen, phosphate, calcium, magnesium, plant growth regulators and their concentrations influcenced the relative biosynthesis of saponin in tissue cultures of Panax ginseng.

  • PDF

The ACC deaminase from rhizobateria promoted resistance of salininty stress in seedling and growth of plant

  • Soh, Byoung-Yul;Lee, Gun-Woong;Ju, Jae-Eun;Kim, Hae-Min;Chae, Jong-Chan;Lee, Yong-Hoon;Oh, Byung-Taek;Lee, Kui-Jae
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.17-17
    • /
    • 2010
  • Rhizobacteria are a diverse group of free-living soil bacteria that live in plant rhizosphere and colonized the root system. Plant growth-promoting rhizobacteria (PGPR) possessing ACC deaminase (ACCD) can reduce ACC and ethylene in plant tissue and mediated the growth of plants under various stresses including salt stress. ACCD decrease ethylene levels in plant tissue that produce high levels of ethylene in tissue via elevated levels of ACC under salt stress. We selected strains of Pseudomonas sp. possessing ACCD activity for their ability to promote plant growth under salt stress from soil sample collected at Byeonsan, Jeonbuk, South Korea. The Pseudomonas strains possessing ACCD increased the rate of the seedling and growth of chinese cabbage seeds under salt stress. We cloned ACCD gene from P.fluorescens and expressed recombinant protein in Escherichia coli. The active form of recombinant ACCD converted ACC to a-ketobutyrate. The in vivo treatment of recombinant ACCD itself increase the rate of the seedling and growth of Chinese cabbage seeds under salt stress. The polyclonal P.fluorescens anti-ACCD antibody specifically reacted with ACCD originated from Pseudomonas. This indicates that the antibody might act as an important indicator for ACCD driven from Pseudomonas exhibiting plant growth-promoting activity. This study will be useful for identification of newly isolated PGPR containing ACCD and exploioting the ACCD activity from PGPR against various biotic and abiotic stresses.

  • PDF

Plant-Based Decellularization: A Novel Approach for Perfusion-Compatible Tissue Engineering Structures

  • Md Mehedee Hasan;Ashikur Rahman Swapon;Tazrin Islam Dipti;Yeong-Jin Choi;Hee-Gyeong Yi
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1003-1016
    • /
    • 2024
  • This study explores the potential of plant-based decellularization in regenerative medicine, a pivotal development in tissue engineering focusing on scaffold development, modification, and vascularization. Plant decellularization involves removing cellular components from plant structures, offering an eco-friendly and cost-effective alternative to traditional scaffold materials. The use of plant-derived polymers is critical, presenting both benefits and challenges, notably in mechanical properties. Integration of plant vascular networks represents a significant bioengineering breakthrough, aligning with natural design principles. The paper provides an in-depth analysis of development protocols, scaffold fabrication considerations, and illustrative case studies showcasing plant-based decellularization applications. This technique is transformative, offering sustainable scaffold design solutions with readily available plant materials capable of forming perfusable structures. Ongoing research aims to refine protocols, assess long-term implications, and adapt the process for clinical use, indicating a path toward widespread adoption. Plant-based decellularization holds promise for regenerative medicine, bridging biological sciences with engineering through eco-friendly approaches. Future perspectives include protocol optimization, understanding long-term impacts, clinical scalability, addressing mechanical limitations, fostering collaboration, exploring new research areas, and enhancing education. Collectively, these efforts envision a regenerative future where nature and scientific innovation converge to create sustainable solutions, offering hope for generations to come.