• Title/Summary/Keyword: Plant Test

Search Result 3,799, Processing Time 0.029 seconds

Experimental Study on Wear Characteristics of Metallic Materials used in Oil Sands Plants (오일샌드 플랜트용 금속소재의 마모 특성에 대한 실험적 연구)

  • Won, Sung-Jae;Cho, Seung-Hyun;Kang, Dae-Kyung;Heo, Joong-Sik
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Recently, international attention has been focused on the development of non-traditional energy resources such as shale gas and oil sands, due to the steep increase in the demand for natural resources. The materials incorporated in an oil gas plant module experience extreme environments, and are prone to various problem such as fracture, corrosion and abrasion due to low-temperature brittleness. In order to improve the plant life, it is necessary to perform characteristics study and performance evaluation of the materials. In particular, this paper explains the main set of materials which are most frequently used in oil sands plant project. In order to investigate wear characteristics, the authors carried out abrasive wear tests of TP 316, stainless steel and SS 400, structural rolled steel. For the analysis of the abrasive wear resistance of an oil sands plant, the authors carried out the test according to ASTM G 105 "Standard Test Method for Conducting Wet Sand/Rubber Wheel Abrasion Test" standard guidelines. The authors have derived the results from the data associated with the loss of mass with respect to wear rate. During the test, for a given wear length for 10,000 revolutions, the rotational speed and applied force of the rubber wheel were varied.

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

A Study of the performance test method of DCS for a large industrial plant (분산제어시스템 기능점검 방법에 관한 연구)

  • Ma, B.R.;Lee, J.H.;Jung, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.883-886
    • /
    • 1999
  • Recently, with the development of computer technology, field instrument and control system using in industrial fields have changed from mechanical, electrical systems to digital electronic systems. Distributed control system(DCS), control functions are dispersed for grading up reliability and informations are combined fur effective management has been developed and sold. As this system has been enlarged and complicated, it is difficult to testing the system and very important to verifing functions systematically. In this report, function test procedure which is performed spontaneously by domestic or foreign DCS manufacturer was searched and analyzed. As its results, the test procedure of DCS functions were proposed. The proposed procedure was applied to DCS being used for a thermal power plant. The function test for DCS requires continuous and dynamic input/output signals, therefore we proposed the method to compose virtual plant which simulate the DCS functions with. And we suggested the test procedure of each DCS function.

  • PDF

A Study on Development of Signal Conditioner for Test of Automatic Control Equipments in Hydro Power Plant (수력발전소 자동제어설비 시험용 신호변환장치 개발에 관한 연구)

  • Byun, Doo-Gyoon;Chang, Moon-Soung;Kim, Ju-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.169-171
    • /
    • 1995
  • Automatic control equipment in hydro power plant, such as turbine governor or automatic voltage regulator have to act promptly against for variation of power system, so it is necessary to check and test continuously. During last five years, the performance test of automatic control equipment was performed about 20 units of hydro turbine generator. In this process, because it has complex connection and before calibration, signal conditioner was developed as an auxiliary equipment for performance test. It includes function of signal amplifier, transducer, and meters. As a result of use this equipment for electric governor test at soyang-gang hydro power plant, it was possible to find output data equal to old one.

  • PDF

Calibration of Acceleration Plant and Test Rig Design to Dynamic Fracture (동적 파괴에 대한 가속장치의 보정 및 시험장치 설계)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.47-52
    • /
    • 2008
  • The force transducer in the acceleration plant due to dynamic fracture is calibrated by dynamically using the stress pulses from a longitudinal bar. The bar is supported by two strings attached to the ceiling. The bar velocities before and after impact are measured and a full bridge at bar and transducer is formed by the four strain gauges. A transient recorder is used to store the stress pulse signals of force transducer and bar. For the first test series, three point bend test specimens can be chosen by means of test rig design and the inspection as sample experiment in this presented paper is sufficient for proving with the numerical simulation of the specimen model.

Development of STI/AOT Optimization Methodology and an Application to the AFWPs with Adverse Effects

  • You, Young-Woo;Yang, Hui-Chang;Chung, Chang-Hyun;Moosung Jae
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.211-217
    • /
    • 1997
  • Adverse effects caused by the surveillance test for the components of nuclear power plant involve plant transients, unnecessary wear, burden on licensee's time, and the radiation exposure to personnel along with the characteristics of each component. The optimization methodology of STI and AOT has been developed and applied to AFWPs of a reference plant. The approach proposed in this paper consist of the resole in minimal mean unavailability of the two-out-of-four system with adverse effects are analytically calculated for the example system. The surveillance testing strategy are given by the sequential test, the staggered test and the train staggered test which is a mined test scheme. In the system level, the sensitivity analyses for the STI and AOT, are performed for the measure of the system unavailability of the top event in the fault tree developed for the example system. This methodology may contribute to establishing the basis for the risk-based regulations.

  • PDF

Modeling of a Small Group Scale TMR Plant for Beef Cattle and Dairy Farm in Korea(II) - Performance Test and Cost Analysis of the Model Plant - (한우 및 낙농 단지용 소형 TMR 플랜트 모델 개발(II) - 모델의 성능시험 및 경제성분석 -)

  • Ha, Yu-Shin;Hong, Dong-Hyuck;Park, Kyung-Kyoo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.91-99
    • /
    • 2010
  • A Model of small scale total mixed rations(TMR) plant which can be utilized round bales was developed, tested and analyzed in this study. This study consist of two parts. One is development of a small scale TMR plant model which was already reported at the previous paper. This is the second part of the study. For the study, a series of tests of the model plant were performed and its costs was analyzed. Also, the break-even point of the model plant by comparing with market price of commercial TMR feed was determined. Results of the research are summarized as follows ; As the results of mixing test, the average coefficient of variation(CV) value for mixing of the feed was 13.0 % at the gate of the mixer. The production cost was estimated as 8,298 won/head for dairy cattle farm and 2,495 won/head for beef cattle farm, when producing 8 batch a day. Also, it is recommended to utilize the model plant when farm size is over 79 heads for dairy cattle farm and 113 heads for beef cattle farm. As an overall conclusion, the model plant designed for farm size TMR feed mill will be very useful model for both beef cattle and dairy farms in Korea. Also it is expected that the capital investment for the model plant can be recovered with 8 months compare with purchasing commercial TMR feed if the model plant feeds 1,000 beef cattle approximately.

The Reliability Evaluation of TBN Valve Testing Extension in NPP (원자력발전소 터빈밸브 시험주기 연장시 신뢰도평가)

  • Lim, Hyuk-Soon;Lee, Eun-Chan;Lee, Keun-Sung;Hwang, Seok-Won;Seong, Ki-Yeoul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3221-3223
    • /
    • 2007
  • Recently, nuclear power plant companies have been extending the turbine valve test interval to reduce the potential of the reactor trip accompanied with a turbine valve test and to improve the NPP's economy through the reduction of unexpected plant trip or decreased operation. In these regards, the extension of the test interval for turbine valves was reviewed in detail. The effect on the destructive overspeed probability due to the test interval change of turbine valves is evaluated by Fault Tree Analysis(FTA) method. Even though the test interval of turbine valves is changed from 1 month to 3 months, the analysis result shows that the reliability of turbine over speed protection system meets acceptance criteria of 1.0E-4/yr. This result will be used as the technical basis on the extension of the test interval for turbine valves. In this paper, the propriety of the turbine valve test interval extension is explained through the review on the turbine valve test interval status of turbine overspeed protection system, the analysis on the annual turbine missile frequency and the probability evaluation of the destructive overspeed due to the test interval extension.

  • PDF

Development of Process Model for Turbine Control Valve Test in a Power Plant (발전소 터빈제어 밸브시험 계통 모델 개발)

  • Woo, Joo-Hee;Choi, In-Kyu;Park, Doo-Yong;Kim, Jong-An
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.830-837
    • /
    • 2011
  • A turbine control system which has been operated for years in a nuclear power plant was retrofitted with a newly developed digital control system. After completion of the retrofit, turbine valve tests were performed to ensure the integrity of each valve's control function. The sequence of each valve test is composed of a closing process and a reopening process. To minimize megawatt variation which normally occurs during the test sequence, we employed a kind of compensator algorithm in the new digital control system which also have been used in the old system. There were difficulties finding optimal parameter settings for our new compensator algorithm because the power plant didn't allow us to perform necessary tuning procedures while the turbine is on load operation. Therefore an alternative measure for the compensator tuning which is independent of the turbine actual operation had to be implemented. So, a process model for the test was required to overcome this situation. We analyzed the operation data of the test and implemented the process model by use of input and output variable relations. Also we verified the process model by use of another condition's operating data. The result shows that the output of model is similar to the actual operation data.

Development of Power Plant Simulator for Control System Verification & Validation (제어 검증용 발전소 시뮬레이터 개발)

  • Byun, Seung-Hyun;Hwang, Do-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.41-51
    • /
    • 2010
  • A control system has been being developed by korean engineers for 500MW korean standard type fossil power plant with the advent of retrofit of old control system. Simulators have been used for digital I&C system pre-tests and validation tests in nuclear power plants. In this paper, the power plant simulator for control system V&V was developed in order to verify the developed control system prior to application to a power plant. The control models were developed using plant control system data, translator programs, and vendor manuals. The developed simulator was verified by steady-state test, load swing test, transient test and so on.