• Title/Summary/Keyword: Plant Test

Search Result 3,805, Processing Time 0.03 seconds

Allelopathic Effects of Catsear (Hypochaeris radicata L.) for the Development of Environmentally-friendly Agricultural Materials (친환경농자재 개발을 위한 서양금혼초(Hypochaeris radicata L.)의 알레로패시 효과)

  • Cha, Jin-Woo;Kim, Hyoun-Chol;Kang, Jeong-Hwan;Kim, Tae-Keun;Jung, Dae-Cheon;Song, Sang-Churl;Lee, Hee-Sean;Song, Jin-Young;Song, Chang-Khil
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.1
    • /
    • pp.129-145
    • /
    • 2014
  • To evaluate the potential of Hypochoeris radicata L. for the development of environment-friendly organic materials, its growth characteristics, allelopathic effects and antifungal activity was investigated. The growth characteristics of H. radicata L. was investigated by measuring comparative number of shoot and flower, and the diameters of clones in mowing areas and non-mowing areas, respectively. As a result, the number of shoot and flower, and diameters of clones of H. radicata L. grown in mowing areas were much higher than those grown in non-mowing areas. Water extracts of H. radicata L. inhibited seed germination, and shoot, root and root hair growth of 14 test plants including Trifolium pratense, Festuca myuros, Bidens bipinnata and finally reduced heir biomass remarkably. The inhibitory effect of the extract was different depending on the kind and the part of tested plants. The extracts showed high antifungal activity against Pythium spp. and Phytophthora However, it showed comparably less antifungal activity against Rhizoctonia solani than Pythium spp. and Phytophthora. In conclusion, cutting H. radicata L. resulted increase of its vegetative and seed propagation and helped it to form large colony. Also it had an effect on growth of microbes and germination and growth of other plants. Therefore H. radicata L. holds the competitive dominant position in plant ecosystem in Jeju Island and it can be used as candidate of environment-friendly organic materials.

Biological Evaluation of the Methanolic Extract of Eriobotrya japonica and Its Irradiation Effect (비파 메탄올 추출물의 생리활성 및 방사선 조사 효과)

  • Kim, Hee-Jung;Jo, Cheor-Un;Kim, Tae-Hoon;Kim, Dong-Sup;Park, Moon-Young;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.684-690
    • /
    • 2006
  • Eriobotrya japonica has been used as a folk medicine for treatment of skin diseases, inflammation, coughing, phlegm, and ulcers in Korea and other Asian countries. In a search for possible bioactive agents from natural sources, we found that the methanolic extracts from various parts of E. japonica showed moderate antioxidative and antimicrobial activities in several in vitro bioassay systems. Additionally, the respective parts of E. japonica were irradiated at 20 kGy to investigate the effects of irradiation. Gamma irradiation of E. japonica extracts removed the deep greenish color without affecting its natural biological activities such as its antioxidative and antimicrobial properties. Based on these findings, the methanolic extracts of this plant source may be not affected by gamma irradiation as its bioactive constituents may be insensitive to this irradiation. Moreover, the methanolic extract of E. japonica may serve as a good natural resource for beneficial functions in food and other related industries.

Variations of Yields and Growth-related Characteristics Shown by Different Ecotype of Rice Varieties in the Temperate and Tropical Zones I. Variation of Heading Time and Growth-related Characteristics Shown by Varieties in Temperate and Tropical Zones (온대와 열대에서 생태형이 다른 수고품종의 수량 및 생육형질의 변이 I. 온대와 열대지방간의 품종별 출수기 및 생육형질의 변이)

  • ;Eun-Woong Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.277-285
    • /
    • 1986
  • A total of 16 varieties from Korea and Indonesia were tested at Suwon, Korea (126$^{\circ}$19'E, 37$^{\circ}$16'N and 37m above sea level) and Bali, Indonesia (115$^{\circ}$ 14'E, 8$^{\circ}$42'S and 10m above sea level). Japonica-type varieties showed pre-matured heading at Bali, tropical zone, while Bulu varieties showed no heading at Suwon, temperate zone. The varieties of Indica-type and Ind./Jap. showed faster heading in tropical zone than in temperate zone. Dry matter of the varieties weighed more difference among varietal groups in tropical than in temperate area, while plant height responsed differently depending on variety and test region.

  • PDF

Impact of phosphorus application on the indigenous arbuscular mycorrhizal fungi, soybean growth and yield in a 5-year phosphorus-unfertilized crop rotation

  • Higo, Masao;Sato, Ryohei;Serizawa, Ayu;Gunji, Kento;Suzuki, Daisuke;Isobe, Katsunori
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.351-351
    • /
    • 2017
  • Arbuscular mycorrhizal fungi (AMF) are particular soil fungi that benefit many crops and require a symbiosis with plant roots to survive. In our previous study, there was a positive correlation between AMF root colonization and soybean grain yield in a four-year consecutive winter cover crop-soybean rotational system without phosphorus fertilizer. It is suggested that higher AMF root colonization can be a better solution for improving soybean growth and grain yield in P-limited soil. Our purpose in this study was to test the hypothesis that a P application is the main factor improving soybean growth, P nutrition and grain yield, and the benefit from AMF to soybean P uptake and growth in a P-limited soil. Impact of a P application on AMF root colonization and communities in soybean roots and their potential contribution to soybean growth and P nutrition under a five-year P-unfertilized crop rotational system were investigated over two-years. In this study, four cover crop treatments included 1) wheat (Triticum aestivum); 2) red clover (Trifolium pratense); 3) rapeseed (Brassica napus); and 4) fallow in the crop rotation. The amount of triple superphosphate as a P fertilizer applied rate after cultivation of cover crops was 120 and $360k\;ha^{-1}$ in 2014 and 2015, respectively. Soybean roots were sampled at full-flowering and analyzed for AMF communities using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real-time PCR (qPCR) techniques. The AMF root colonization in the soybean roots at full bloom stage was significantly influenced by cover crop and P application throughout the two-year rotation. The two-year rotation of different cover crops or fallow impacted the molecular diversity of AMF communities colonizing roots of soybean. Redundancy analysis (RDA) indicated that AMF communities colonizing roots of soybean were significantly different among cover crop rotations. The AMF communities colonizing roots of soybean were clearly influenced by a P application in the two-year trial. Moreover, a P application may have positively impacts on the AMF communities under P-deficit soil due to the continuous cover crop-soybean rotational system without a P fertilizer.

  • PDF

Suppressive Effect of Repellent Plant Cultivation against Striped Flea Beetle of Chinese Cabbage (동반작물 주위재배에 의한 배추 벼룩잎벌레 억제효과)

  • Han, Eun-Jung;Choi, Jae-Pil;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Seok-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.911-921
    • /
    • 2015
  • We evaluated two herbal plants, basil (Ocimum basilicum) and lemon balm (Melissa officinalis), for their potential as repellent plants in the management of striped flea beetle (Phyllotreta striolata), in organic production of chinese cabbage. It was confirmed that striped flea beetle avoided these two herbal plants in olfactometer experiment. We conducted field experiment in which the suppressive effect of the two selected herbal plants and cruciferous crops preferred by striped flea beetle were evaluated through cultivating as inter crops and border crops, respectively. In inter-cropping experiment, unlike in vitro test, the density of striped flea beetle was low in basil- or mustard-intercropping cultivation plot, but high in lemon balm-intercropping cultivation plot. In border cropping experiment, the density of striped flea beetle on chinese cabbage in lemon balm or basil cultivation plot were approximately zero. As a result of this study, we think that border cropping of lemon balm or basil can be used to reduce preventively striped flea beetle of chinese cabbage under organic farming system.

Synthesis and Lubricant Properties of Estolides based on Fatty Acid (지방산 기반 에스토라이드 합성 및 윤활특성)

  • Son, Jeong-Mae;Yoo, Seunghyun;Lee, Sangjun;Shin, Jihoon;Chung, Kunwo;Yang, Youngdo;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.256-264
    • /
    • 2014
  • Enhancing the value of fine chemicals based on biomass resources is an important objective for addressing environmental and other concerns such as demand for renewable or green products, as well as from the political perspective to reduce dependence on fossil feedstock associated with the use of petroleum-based products. Based on these considerations, we studied the synthesis of estolide using waste plant-based oil materials and their application as lubricants and pour point depressants. Five estolides were prepared by varying molar ratio of palmitic acid (PA) to oleic acid (OA) using a reaction time of 48 h. The estolides were characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR). The isolated yields were in the range of 57-78 % and purity was 93-97%, showing iodine values of 18.2-37.8, total acid numbers (TANs) of 75.6-94.2 mg KOH/g and estolide numbers (ENs) of 1.2-1.8. Increasing the ratio of OA to PA in the synthesis decreased the kinematic viscosity and clouding point of the estolides. Four ball wear test of the estolides as a base oil demonstrated that the wear scar diameter (WSD) of the estolides was significantly lower (0.320-0.495 mm) than the WSD of general base oils such as 150N and Yubase (0.735 and 0.810 mm, respectively), indicating better wear resistance of the estolides. However, the lubricant property was found to be independent of the amount of OA in the estolides. These new materials are prospective candidates for application as a lubricant base oil.

Shear Capacity Evaluation of Steel Plate Anchors Using Folded Steel Plate in AU-composite Beam (절곡 강판을 이용한 AU합성보 덮개형 강재앵커의 전단성능 평가)

  • Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.389-400
    • /
    • 2017
  • Based on U-shaped composite beam, the new form of AU-composite beam were developed to create economical and efficient components reducing the cost and shortening the length of construction work. Because the U-shaped sections are open and needs to be fixed by topping concrete securely. Therefore, it is required to maintain the U-shaped sections in a structure and to work in the safe condition through construction. It also requires accessories that resist the horizontal shear force for synthesis between the top and bottom of the U-shaped section. To reinforce these shortcomings, a shear connector has been developed with various purposes of steel plate anchors. In this study, the steel plate anchors were directly tested and the shear force was evaluated by the horizontal shear force. The experiment was divided into two types, depending on the applicable deck plates. As a result of the experiment, the continuous type specimens showed greater resistance in both strength and displacement than the ones of stud anchor specimen. In discontinuous type case, due to shear simulations and simple element analysis, the less increase the ratio of width to height and the more shear strength decreased. Thus, the shear strength equation of the stud anchor was modified to suggest the new shear strength based on the testing results.

Soil Erosion Assessment Tool - Water Erosion Prediction Project (WEPP) (토양 침식 예측 모델 - Water Erosion Prediction Project (WEPP))

  • Kim, Min-Kyeong;Park, Seong-Jin;Choi, Chul-Man;Ko, Byong-Gu;Lee, Jong-Sik;Flanagan, D.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.235-238
    • /
    • 2008
  • The Water Erosion Prediction Project (WEPP) was initiated in August 1985 to develop new generation water erosion prediction technology for federal agencies involved in soil and water conservation and environmental planning and assessment. Developed by USDA-ARS as a replacement for empirical erosion prediction technologies, the WEPP model simulates many of the physical processes important in soil erosion, including infiltration, runoff, raindrop detachment, flow detachment, sediment transport, deposition, plant growth and residue decomposition. The WEPP included an extensive field experimental program conducted on cropland, rangeland, and disturbed forest sites to obtain data required to parameterize and test the model. A large team effort at numerous research locations, ARS laboratories, and cooperating land-grant universities was needed to develop this state-of-the-art simulation model. The WEPP model is used for hillslope applications or on small watersheds. Because it is physically based, the model has been successfully used in the evaluation of important natural resources issues throughout the United State and in several other countries. Recent model enhancements include a graphical Windows interface and integration of WEPP with GIS software. A combined wind and water erosion prediction system with easily accessible databases and a common interface is planned for the future.

Control of Bermudagrass (Cynodon dactylon) Causing Weedy in Zoysiagrass matrella Merr (금잔디에 잡초성 버뮤다그래스 방제)

  • Tae, Hyun-Sook;Kim, Yong-Seon;Heo, Young Du
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.402-407
    • /
    • 2013
  • Bermudagrass (Cynodon dactylon.) is one of the most difficult weedy species to control in turfgrass because it's high tolerant to various environmental and management stresses. This experiment was performed to find the integrated weed management including cultural practices to suppress bermudagrass in Zoysiagrass matrella (L) Merr. As results, two sequential applications of Fluazifop-P-butyl 0.05 ml $m^{-2}$ + Triclopyr-TEA 0.5 ml $m^{-2}$ and Fenoxaprop-P-ethyl 0.1 ml $m^{-2}$ + Triclopyr-TEA 0.5 ml $m^{-2}$ applied on 20 days intervals were evaluated the primary option for bermudagrass suppression and turfgrass injury was acceptable in zoysiagrass. In both treatments, turf injury was observed during 30days after the first application and almost recovered at 40days. While Fenoxaprop-Pethyl 0.1 ml $m^{-2}$ + Triclopyr-TEA 0.5 ml $m^{-22}$ were lightly phytotoxic to zoysiagrass in chlorophyll content test, there was no growth inhibition of zoysiagrass. Verticut practice (4 mm depth) just before herbicides application where zoyisagrass is contaminated with bermudagrass was not helpful to reduce turf injury in this experiment. However, alone verticut management was utilized to decrease about 12-14% bermudagrass population. Thus the application of Fenoxaprop-P-ethyl 0.1 ml $m^{-2}$ + Triclopyr-TEA 0.5 ml $m^{-2}$ which are permitted for turfgrass after zoysiagrass is perfectly recovered from turf injury by verticut practice should be utilized for bermudagrass reduction in zoysiagrass.

A Study on High Temperature Creep and Stress Relaxation Properties of Zr-4 (Zr-4의 고온 크리프 및 응력이완 특성에 관한 연구)

  • Oh, Sea-Kyoo;Park, Chung-Bae;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.71-78
    • /
    • 1992
  • Zr-4 used for a cladding and an end plug of reactor component has creep deformation under operation at high temperature. Creep is regarded as the time dependent deformation of a material under constant applied stress. Although the major source of the deformation of zirconium component in water-cooled reactors is irradiation creep, the thermal creep may give a rise to significant deformation in reactor component especially at relatively high temperatures and at various constant stresses, and therefore it must be predicted accurately. Stress relaxation is the time dependent change of stress at constant strain and it is a process related intimately to creep. In this paper, the creep behavior and stress relaxation of Zr-4 is examined at the temperature of 50$0^{\circ}C$ that is 40% of the absolute melting temperature of Zr-4 under the stress below yield stress and under the various constant strains. The results obtained are summarized as follows: 1) With an increase of stress, the steady state creep rate increases and the creep rupture time decreases. 2) The steady state creep rate $\varepsilon$(%/s) for the stress $\sigma$sub(c) (kgf/mm super(2)) of Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 are in accord with Norton's model equation($\varepsilon$=K$\sigma$ sub(c) super (n)). The constants of materials computed are as follows: K=3.9881$\times$10 super(-5), n=1.9608 3) The rupture time T sub(r) (hr) decreases linearly with the increase of stress on the log-log scaled graph. The empirical equations computed for Zr-4 are in accord with Bailey's model equation (T sub(r)=K sub(1)$\sigma$sub(c) super(m)). The constants of materials computed are as follows: K sub(1)=1.2875$\times$10 super(16), m=-3.467 4) It seems clear that the strain could be quantitatively dependent on the high temperature creep properties such as creep stress, rupture time, steady state creep rate and total creep rate. It is found that these relationships are linear on the log-log graph. 5) In stress relaxation test, as the critical constant strain that can be allowed to the specimen is larger, stress relaxation becomes more rapid, and as the constant strain is smaller, the stress relaxation becomes slower.

  • PDF