• 제목/요약/키워드: Plant Simulation

검색결과 1,738건 처리시간 0.026초

Simulation Study on Measuring Pulverized Coal Concentration in Power Plant Boiler

  • Chen, Lijun;Wang, Yang;Su, Cheng
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.189-202
    • /
    • 2019
  • During thermal power coal-fired boiler operation, it is very important to detect the pulverized coal concentration in the air pipeline for the boiler combustion stability and economic security. Because the current measurement methods used by power plants are often involved with large measurement errors and unable to monitor the pulverized coal concentration in real-time, a new method is needed. In this paper, a new method based on microwave circular waveguide is presented. High Frequency Electromagnetic Simulation (HFSS) software was used to construct a simulation model for measuring pulverized coal concentration in power plant pipeline. Theoretical analysis and simulation experiments were done to find the effective microwave emission frequency, installation angle, the type of antenna probe, antenna installation distance and other important parameters. Finally, field experiment in Jilin Thermal Power Plant proved that with selected parameters, the measuring device accurately reflected the changes in the concentration of pulverized coal.

자동차 도장공정의 생산성 향상을 위한 시뮬레이션 분석 (Analysis of the Productivity of Automobile Painting Process Using Computer Simulation)

  • 김원경
    • 한국시뮬레이션학회논문지
    • /
    • 제8권2호
    • /
    • pp.73-85
    • /
    • 1999
  • In this paper, the productivity estimation of the painting line in an automobile plant is studied. To improve the bottleneck and the weak point of the process, computer simulations are performed. In determining the system specification, the status of the conveyor lines and the other physical facilities are considered in order not to intervene with each other and to satisfy the painting facility restrictions. As simulation parameters, production performance ratio, number of hanger and dolley, down time, speed of conveyor and the pitch of a painting body are chosen on the basis of exhaustive field evaluation to study their effects on the capacity of the process. The results of the simulation show that we can improve the capability of they system without additional investment to the plant facility. The best condition for the maximum capacity of the process is selected by comparing the alternative computer simulation results. As a simulation language, Promodel is used which is very useful and easy to use in manufacturing oriented simulation.

  • PDF

Proposed Neural Network Approach for Monitoring Plant Status in Korean Next Generation Reactors

  • Varde, P.V.;Hur, Seop;Lee, D.Y.;Moon, B.S.;Han, J.B.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.112-120
    • /
    • 2003
  • This paper reports the development work carried out in respect of a proposed application of Neural Network approach for the Korean Next generation Reactor (KNGR) now referred as APR-1400. The emphasis is on establishing the methodology and the approach to be adopted towards realizing this application in the next generation reactors. Keeping in view the advantages and limitation of Artificial Neural Network Approach, the role of ANN has been limited to plant status or to be more precise plant transient monitoring. The simulation work carried out so far and the results obtained shows that artificial neural network approach caters to the requirements of plant status monitoring and qualifies to be incorporated as a part of proposed operator support systems of the referenced nuclear power plant.

매트랩 시뮬링크를 이용한 플랜트 유닛마스터 제어로직 시뮬레이션 기법 개발 (Simulation Methods Development for a Plant Unit Master Control Logic Using Simulink in MATLAB)

  • 윤창선;홍연찬
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.324-334
    • /
    • 2017
  • 발전소 유닛마스터제어(UMC)용 시뮬레이터는 국내 및 해외에서 운전원 훈련 목적으로 개발되어 왔다. 일반적으로 UMC 시뮬레이터는 발전소 건설 마지막에 구축되는데, UMC 로직은 발전설비 내에 있는 많은 신호들 간의 간섭사항들을 사전에 확인하기 위해 시뮬레이션이 필수적으로 필요하지만 공정 일정 차이로 인하여 플랜트 로직 설계자나 시운전 엔지니어들이 UMC 로직을 시뮬레이션 하기는 쉽지 않다. 이러한 배경으로 본 논문에서는 발전소 로직 설계자와 운전원들이 매틀랩에서 제공하는 시뮬링크 환경에서 손쉽게 구현할 수 있는 시뮬레이션 방법을 제안한다. UMC의 핵심기능이 수학적 분석과 기능 블록 조합이 기본으로 구성된 독특한 시뮬레이션 알고리즘을 통해 구현된다. 또한, 로직 내 설비 목표값 제어를 위해 정수기반 구성도가 제안된다. 이러한 시뮬레이션 기법들을 통해 부하 분배, 상 하한치 제한, 주파수 보상 등의 기능들이 시뮬링크 내에서 성공적으로 구현될 수 있음을 보이고, 결과적으로 우리는 UMC 로직을 플랜트 시뮬레이터 없이도 시뮬링크에서 구현할 수 있음을 보인다. 본 논문에서 제시한 다양한 시뮬레이션 기법들은 발전소 건설 기간 중 플랜트 로직 설계자 또는 시운전 엔지니어들을 위한 시뮬링크 기반의 시뮬레이션 설계 관련한 양질의 정보를 제공할 수 있을 것으로 사료된다.

Application of Flow Network Models of SINDA/FLUIN $T^{TM}$ to a Nuclear Power Plant System Thermal Hydraulic Code

  • Chung, Ji-Bum;Park, Jong-Woon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.641-646
    • /
    • 1998
  • In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUIN $T^{™}$ has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA).

  • PDF

Experimental Simulation of Iron Oxide Formation on Low Alloy Steel Evaporator Tubes for Power Plant in the Presence of Iron Ions

  • Choi, Mi-Hwa;Rhee, Choong-Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2577-2583
    • /
    • 2009
  • Presented are the formation of iron oxide layers on evaporator tubes in an actual fossil power plant operated under all volatile treatment (AVT) condition and an experimental simulation of iron oxide formation in the presence of ferrous and ferric ions. After actual operations for 12781 and 36326 hr in the power plant, two iron oxide layers of magnetite on the evaporator tubes were found: a continuous inner layer and a porous outer layer. The experimental simulation (i.e., artificial corrosion in the presence of ferrous and ferric ions at 100 ppm level for 100 hr) reveals that ferrous ions turn the continuous inner oxide layer on tube metal to cracks and pores, while ferric ions facilitate the production of porous outer oxide layer consisting of large crystallites. Based on a comparison of the oxide layers produced in the experimental simulation with those observed on the actually used tubes, we propose possible routes for oxid layer formation schematically. In addition, the limits of the proposed corrosion routes are discussed in detail.

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • 제1권3호
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

불산의 비정상 확산거동 예측을 위한 대와동모사 (Large Eddy Simulation for the Prediction of Unsteady Dispersion Behavior of Hydrogen Fluoride)

  • 고민욱;오창보;한용식;최병일;도규형;김명배;김태훈
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.14-20
    • /
    • 2015
  • A Large Eddy Simulation(LES) was performed for the prediction of unsteady dispersion behavior of hydrogen fluoride (HF). The HF leakage accident occurred at the Gumi fourth industrial complex was numerically investigated using the Fire Dynamics Simulator (FDS) based on the LES. The accident area was modeled three-dimensionally and time-varying boundary conditions for wind were adopted in the simulation for considering the realistic accident conditions. The Message Passing Interface (MPI) parallel computation technique was used to reduce the computational time. As a result, it was found that the present LES simulation could predict the unsteady dispersion features of HF near the accident area effectively. The dispersion behaviors of the leaked HF was much affected by the unsteady wind direction. The LES could predict the time variation of the HF concentration reasonably and give an useful information for the risk analysis while the prediction with the time-averaging concept of HF concentration had a limitation for the amount of HF concentration at specific location point. It was identified that the LES is very useful to predict the dispersion characteristics of hazardous chemicals.

발전소 시뮬레이터를 위한 고압 터빈 바이패스 압력 제어 모델 개발 (Development of a High Pressure Turbine Bypass System Pressure Control Model for Power Plant Simulator)

  • 변승현;이주현;임익헌
    • 한국시뮬레이션학회논문지
    • /
    • 제20권4호
    • /
    • pp.49-58
    • /
    • 2011
  • 국산 개발 분산 제어시스템의 발전 설비에의 적용을 위해서는 시뮬레이터를 이용한 제어 시스템의 기능 및 신뢰성 등의 검증이 선행되어야만 한다. 본 논문에서는 제어 시스템 검증용 시뮬레이터를 개발하는데 있어서, 제어 모델 중 발전소 기동 초기에 보일러 압력을 조절하고, 정상 운전 중 보일러의 과대 압력 상승을 방지하기 위해 보일러에서 발생한 증기를 복수기로 방출하는 터빈 바이패스 계통의 제어 모델을 개발하였다. 제어 모델 개발을 위해, 통합 시뮬레이션 개발 환경에서 활용가능한 제어 로직 구현 툴을 개발하였다. 또한 개발한 툴의 기능은 개별 기능 블럭의 설계 사양에 기반한 시뮬레이션에 의해 검증을 하였으며, 개발한 툴을 이용하여 고압 터빈 바이패스 계통의 압력 제어 로직을 구현하였다. 500 MW급 표준 석탄화력 발전소 공정 모델과 보일러 제어 모델, 터빈 제어 모델 등 타 계통의 제어 모델과의 연계를 통한 통합 시뮬레이션을 통해 개발한 제어 모델의 효용성을 확인하였다.