• Title/Summary/Keyword: Plant Response

Search Result 2,616, Processing Time 0.03 seconds

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.

Characterization of a Novel Necrotic Response of Glycine max Line 'PI96188' to Xanthomonas axonopodis pv. glycines

  • Han, Sang-Wook;Choi, Min-Seon;Lee, Suk-Ha;Hwang, Duk-Ju;Hwang, Byung-Kook;Heu, Sung-Gi
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.193-202
    • /
    • 2007
  • Typical susceptible symptoms of the bacterial pustule disease caused by Xanthomonas axonopodis pv. glycines are pustule and chlorotic haloes that usually occur in leaves of Glycine max plants. The soybean genotype 'PI96188' showed an atypical response to all tested races X. axonopodis pv. glycines, accompanied with necrosis without chlorotic haloes on the underside of the necrotic symptoms. X. axonopodis pv. glycines 8ra grew to levels from 10 to 100 fold lower on PI96188 than on susceptible cultivar Jinjoo1, but 10-fold higher than on the resistant cultivar CNS. The chlorophyll content in PI96188 leaves remained unchanged until 12 days after bacterial infection. Ultrastructural observation showed that the infected leaf cells of PI96188 had intact normal chloroplasts compared to those of the susceptible cultivar Jinjoo1. Chloroplast degradation or the absence of chloroplasts in cells of the infected tissues was observed in Jinjoo1. Senescence-related ACS7 gene was significantly induced in PI96188 compared to those in Jinjoo1 at 2 days after inoculation. While photosynthesis-related rbcS gene showed the dramatic change in Jinjoo1, this gene was constitutively expressed in PI96188. However, expression of the defense-related genes, such as peroxidase and isoflavone synthase in the infected PI96188 leaves was similar to that in Jinjoo1. Together, these results suggest that the novel necrotic symptom in PI96188 is a kind of resistant response different from a typical hypersensitive response in the resistant genotypes.

Involvement of the OsMKK4-OsMPK1 Cascade and its Downstream Transcription Factor OsWRKY53 in the Wounding Response in Rice

  • Yoo, Seung Jin;Kim, Su-Hyun;Kim, Min-Jeong;Ryu, Choong-Min;Kim, Young Cheol;Cho, Baik Ho;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.168-177
    • /
    • 2014
  • Plant has possessed diverse stress signals from outside and maintained its fitness. Out of such plant responses, it is well known that mitogen-activated protein kinase (MAPK) cascade plays important role in wounding and pathogen attack in most dicot plants. However, little is understood about its role in wounding response for the economically important monocot rice plant. In this study, therefore, the involvement of MAPK was investigated to understand the wounding signaling pathway in rice. The OsMPK1 was rapidly activated by wounding within 10 min, and OsMPK1 was also activated by challenge of rice blast fungus. Further analysis revealed that OsMKK4, the upstream kinase of OsMPK1, phosphorylated OsMPK1 by wounding in vivo. Furthermore, OsMPK1 directly interacted with a rice defense-related transcription factor OsWRKY53. To understand a functional link between MAPK and its target transcription factor, we showed that OsMPK1 activated by the constitutively active mutant $OsMKK4^{DD}$ phosphorylated OsWRKY53 in vitro. Taken together, components involving in the wounding signaling pathway, OsMKK4-OsMPK1-OsWRKY53, can be important players in regulating crosstalk between abiotic stress and biotic stress.

Competition Responses of Populus alba Clone ‘Bolleana’ to red:far-red light

  • Bae, Han-hong;Kang, Ho-duck;Richard B. Hall
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.77-86
    • /
    • 2004
  • The reduced ratio of red:far-red (R:FR) light acts as a measure of the proximity of competitors and plants can detect the potentially competing neighbor plants by perceiving reflected R:FR signals and initiate the response of “shade avoidance” before actual shading occurs. The phytochrome system is responsible for monitoring the changes in the R:FR and initiating the shade avoidance response. The response to low R:FR ratio was studied in a white aspen Populus alba clone ‘Bolleana’ using two filter systems: a clear plastic filter system that allows a R:FR ratio less than 1.0 to pass from adjacent border plant reflection; and a special commercial plastic that blocks FR light and creates a R:FR ratio above 3.0. The reduced R:FR signals enhanced the stem elongation in response to competition at the expense of relative stem diameter growth. Trees grown inside clear chambers were 27 % taller than trees grown inside the FR-blocking filter chambers. Stem taper of clear chamber trees was 16% less than the FR-blocking filter trees. Low R:FR also induced 22% more stem dry weight and 13% greater petiole length per leaf compared to the FR-blocking filter trees. There were no statistically significant differences in leaf area, leaf number increment, and total dry weight between the two light filter treatments.

  • PDF

Isolate Virulence and Cultivar Response in the Winter Wheat: Pyrenophora tritici-repentis (Tan Spot) Pathosystem in Oklahoma

  • Kader, Kazi A.;Hunger, Robert M.;Payton, Mark E.
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.339-346
    • /
    • 2021
  • Prevalence of tan spot of wheat caused by the fungus Pyrenophora tritici-repentis has become more prevalent in Oklahoma as no-till cultivation in wheat has increased. Hence, developing wheat varieties resistant to tan spot has been emphasized, and selecting pathogen isolates to screen for resistance to this disease is critical. Twelve isolates of P. tritici-repentis were used to inoculate 11 wheat cultivars in a greenhouse study in splitplot experiments. Virulence of isolates and cultivar resistance were measured in percent leaf area infection for all possible isolate x cultivar interactions. Isolates differed significantly (P < 0.01) in virulence on wheat cultivars, and cultivars differed significantly in disease reaction to isolates. Increased virulence of isolates detected increased variability in cultivar response (percent leaf area infection) (r = 0.56, P < 0.05) while increased susceptibility in cultivars detected increased variance in virulence of the isolates (r = 0.76, P < 0.01). A significant isolate × cultivar interaction indicated specificity between isolates and cultivars, however, cluster analysis indicated low to moderate physiological specialization. Similarity in wheat cultivars in response to pathogen isolates also was determined by cluster analysis. The use of diverse isolates of the fungus would facilitate evaluation of resistance in wheat cultivars to tan spot.

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

From Recognition to Defense Responses in Rice Plant

  • Jwa, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.13-13
    • /
    • 2003
  • When plants are infected by plant pathogens, rapid cell responses are initiated for further inhibition from fast invasion of pathogens. Hypersensitive response (HR) of plant is well known defense response stopping pathogenesis process through rapid cell death. However, informations on the signaling pathway from reception of pathogen by host plants to appropriate resistant responses are very limited to date. Efficient perception of infection by pathogens and well-programmed signalling mechanism for appropriate responses are important for survival of plants. Plant have developed a sophisticated network(s) of defense/stress responses, among which one of the earliest signalling pathways after perception (of stimuli) is the evolutionary conserved Rop GTPase and mitogen-activated protein kinase (MAPK) cascade.(중략)

  • PDF

INDUCTION OF SYSTEMIC RESISTANCE IN CUCUMBER AGAINST ANTHRACNOSE BY PLANT GROWTH PROMOTING FUNGI

  • Hyakumachi, Mitsuro
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1997.06a
    • /
    • pp.47-55
    • /
    • 1997
  • Plant growth promoting fungi(PGPF) obtained from zoysiagrass rhizosphere offer dual advantages - induse systemic disease resistance response in cucumber to C. orbiculare infection and cause enhancement of plant growth and increase yield. PGPF protected plants either by colonizing roots or by their metabolites. PGPF offer an advantage by protecting plants for more than 9 weeks and 6 week in the greenhouse and field. PGPF-induced plants limited pathogen spore germination and decreased the number of infection hyphae on the leaf, and increased lignification at places of attempted pathogen infection, thus reducing the pathogen spread. PGPF elicited increased activities of chitinascs, glucanases, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase to C. orbiculare infection in cucumber plants. The role of PGPF in elevating cucumber defense response to pathogen infection suggests potential application of PGPF as biological control agents.

  • PDF

Optimization of Finite Element Retina by GA for Plant Growth Neuro Modeling

  • Murase, H.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-29
    • /
    • 2000
  • The development of bio-response feedback control system known as the speaking plant approach has been a challenging task for plant production engineers and scientists. In order to achieve the aim of developing such a bio-response feedback control system, the primary concern should be to develop a practical non-invasive technique for monitoring plant growth. Those who are skilled in raising plants can sense whether their plants are under adequate water conditions or not, for example, by merely observing minor color and tone changes before the plants wilt. Consequently, using machine vision, it may be possible to recognize changes in indices that describe plant conditions based on the appearance of growing plants. The interpretation of image information of plants may be based on image features extracted from the original pictorial image. In this study, the performance of a finite element retina was optimized by a genetic algorithm. The optimized finite element retina was evaluated based on the performance of neural plant growth monitor that requires input data given by the finite element retina.

  • PDF

Evaluation of Structural Integrity of A Plant Control Panel under Seismic (내진에 대한 Plant Control Panel 의 구조적 건전성 평가)

  • Lee, Heung-Shik;Kim, Myung-Gu;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.958-961
    • /
    • 2004
  • This paper presents a plant control panel model for the analysis. Seismic qualification analysis for the plant control panel is carried out to confirm the structural integrity under the seismic conditions represented by required response spectra(RRS). For the analysis finite element method(FEM) is used. And mode combinations are adopted to obtain the reliability of the spectrum analysis. The analysis results shows that the plant control panel system is designed as a dynamically rigid assembly, without any resonance frequency below 33Hz. The calculated stress of the plant control panel system is much less than yield stress of used steel.

  • PDF