• Title/Summary/Keyword: Plant Regulator

Search Result 454, Processing Time 0.031 seconds

Effect of Jasmonic Acid and NaCl on the Growth of Spearmint(Mentha spicata L.) (Jasmonic Acid 및 NaCl 처리가 스피아민트의 생육에 미치는 영향)

  • Choi, Young;Chiang, Maehee
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • This study investigated the effects of NaCl and jasmonic acid (JA) on the growth and physiological responses of spearmint (Mentha spicata L.). Spearmint was hydroponically grown for 3 weeks in modified Hoagland solution containing 0 (untreated control), JA ($20{\mu}M$ JA pretreatment), NaCl (50 mM NaCl treatment) and JA + NaCl ($20{\mu}M$ JA pretreatment + 50 mM NaCl treatment). Growth characteristics, chlorophyll, vitamin C, proline contents, DPPH scavenging activity and inorganic ion contents were evaluated. As a results, there were significant decreases in the plant height, leaf length, leaf width, and fresh weight of plants, treated with NaCl compared with control. On the other hand, the dry matters of shoot and root treated with JA + NaCl combination were better than control or NaCl treatment. Chlorophyll a and b contents in JA treatment was the highest. Vitamin C, antioxidant activity, and proline content in shoot were increased in NaCl treatment which showed low level of growth rate. The K/Na ratio, which is known to indirectly reflect the balance of ion uptake, was higher in a single treatment of JA than the control group, while lower in salt treatment (NaCl and JA + NaCl) because of high $Na^+$ absorption. In conclusion, these results showed that moderate stress treatment such as low level salt treatment and plant growth regulator jasmonic acid (JA) application would be potential strategies to improve the quality of spearmint by inducing the accumulation of secondary metabolites containing high antioxidant activity and essential oil.

In vitro Culture of Adventitious Roots from Dioscorea nipponica Makino for the Production of Steroidal Saponins (부채마 (Dioscorea nipponica Makino)의 부정근 배양조건과 Steroidal Saponin의 기내생산)

  • An Jung-Hee;Son Kun-Ho;Sohn Ho-Yong;Kwon Soon-Tae
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.217-223
    • /
    • 2005
  • Effects of growth regulators on growth of adventitious roots and accumulation of steroidal saponins, such as dioscin, prosapogenin A and prosapogenin C, in cultures of Dioscorea nipponica were determined. The maximum growth of adventitious roots was observed in MS medium supplemented with 30 g/L sucrose and 1.0 mg/L NAA. Addition of BA in combination with NAA appeared to be no effective in the growth of adventitious roots. Among the twenty different adventitious roots formed from different seeds, strain No. 10 was selected based on production ability of dioscin, and its stability through the successive liquid culture. During the first 4 weeks of incubation, contents of steroidal saponins in adventitious roots were negligible but the contents were markedly increased at 5 weeks of incubation. Dioscin and prosapogenin C content in IBA-treated adventitious roots were significantly higher than those in NAA-treated roots. However, content of prosapogenin A was not significantly different among NAA or IBA level. Results provide that liquid culture of adventitious roots of D. nipponica have a potential for mass production of dioscin including prosapogenin A and prosapogenin C.

Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice

  • Yoon, Jinmi;Cho, Lae-Hyeon;Lee, Sichul;Pasriga, Richa;Tun, Win;Yang, Jungil;Yoon, Hyeryung;Jeong, Hee Joong;Jeon, Jong-Seong;An, Gynheung
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.858-868
    • /
    • 2019
  • Shoot branching is an essential agronomic trait that impacts on plant architecture and yield. Shoot branching is determined by two independent steps: axillary meristem formation and axillary bud outgrowth. Although several genes and regulatory mechanism have been studied with respect to shoot branching, the roles of chromatin-remodeling factors in the developmental process have not been reported in rice. We previously identified a chromatin-remodeling factor OsVIL2 that controls the trimethylation of histone H3 lysine 27 (H3K27me3) at target genes. In this study, we report that loss-of-function mutants in OsVIL2 showed a phenotype of reduced tiller number in rice. The reduction was due to a defect in axillary bud (tiller) outgrowth rather than axillary meristem initiation. Analysis of the expression patterns of the tiller-related genes revealed that expression of OsTB1, which is a negative regulator of bud outgrowth, was increased in osvil2 mutants. Chromatin immunoprecipitation assays showed that OsVIL2 binds to the promoter region of OsTB1 chromatin in wild-type rice, but the binding was not observed in osvil2 mutants. Tiller number of double mutant osvil2 ostb1 was similar to that of ostb1, suggesting that osvil2 is epistatic to ostb1. These observations indicate that OsVIL2 suppresses OsTB1 expression by chromatin modification, thereby inducing bud outgrowth.

Optimal Culture Conditions and XAD Resin on Tropane Alkaloid production in Scopolia parviflora Hairy Root Cultures (미치광이풀 모상근의 배양조건 구명 및 XAD Resin 처리에 의한 Tropane Alkaloid 생산)

  • 정희영;강민정;강영민;윤대진;박정동;정영관;최명석
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.525-530
    • /
    • 2002
  • The optimum culture conditions for tropane alkaloid production in hairy root cultures of Korea native Scopolia paviflora Nak. were investigated. Hairy root was induced from the rhizome of the mother plant on B5 medium containing 1.0 mg/L IBA. Among the culture media examined, 1/2 B5 medium was the best for tropane alkaloid production, whereas the growth of hairy root increased in SH medium. The best result on the growth of hairy root was obtained in 1.0 mg/L NAA, and tropane alkaloid production was obtained in plant growth regulator-free medium. Of the carbone sources tested, 3% sucrose promoted the growth of hairy root, whereas 5% sucrose increased tropane alkaloid production. Optimum inoculum densities for root growth and tropane alkaloid production were 0.5 g and 1 g, respectively. The addition of XAD resins (1 % w/v) to hairy root cultures led to increases in tropans alkaloid production, and the release of alkaloid into the medium and its adsorption by the resin accounted for about 50 to 80% of total production. It is concluded that optimized culture conditions and the addition of XAD resins could be used in the development of a bioprocess for tropane alkaloid production in hairy root cultures of S. paviflora Nak.

STUDIES ON THE TISSUE CULTURE OF PANAX GINSENG

  • Harn C
    • Proceedings of the Ginseng society Conference
    • /
    • 1974.09a
    • /
    • pp.9-22
    • /
    • 1974
  • Unlike the tissue culture in animals and human being, in higher plants various parts of the plant are cultured for varied purposes, and they are named variously depending on which parts are used as explants or what purposes they are cultured for. Followings are some of the names of culture used frequently: organ culture, tissue culture, callus culture, single cell culture, meristem culture, mericlone culture, ovary culture, ovule culture, embryo culture, endosperm culture, anther culture, pollen culture, protoplast culture, etc.. As the names of the culture indicate, in some kinds of culture the explants used for culture are actually not tissues, but organs, single cells, or protoplasts. It seems, however, convenient to call all of the above-mentioned cultures grossly as tissue culture. Several kinds of tissue culture were attempted using Panax ginseng as material and some of the results were summarized below. 1. Callus culture After dormancy of the sed was broken, whole embryo or parts (hypocotyl, cotyledon and epicotyl) of partly grown embryo were cultured in the media supplemented with growth regulators. Rapid swelling occurred in a few weeks, but most of the swelling was observed only in the basal part of epicotyl, changes in the other parts of embryo appearing in much later stages. The swelling or increase in size, however, was resulted not from the divisions of cells, but from the mere expansion of cell. Real calli were formed about two months after inoculation of explants. Callus tissues developed from cortex, pith, and vascular bundle in the cases of hypo- and epicotyl, from mesophyl tissue in the case of cotyledon. Shoots developed more easily from cotyledons regardless of whether they are detached from or attached to the embryo proper. 2. Culture in the Knudson C medium When cotyledons, detached from or attached to the embryo proper, were cultured in the growth regulator-free Knudson C medium comprision only several kinds of mineral compounds and sucrose, shoot primordium or callus developed profusely and finally plantlets were produced directly from shoot primordium or indirectly through callus. In this medium epidermal cells as well as mesophyl cells of the cotyledon became meristematic and divided, changing into multinucleate cells or multicellular bodies, developing eventually into either shoot primordia or calli. 3. Anther culture Anthers were cultured in the media supplemented with various growth regulators applied singly or in combinations. Callus was formed mostly in the connective tissue of anther. Cells of anther wall layers changed in appearance, but no division occurred. Microspores of all stages in development were not changed, ruling out the possibility that microspore-originated callus might be formed. 4. Isolation of protoplast Protoplasts were isolated from young root, leaf, and epicotyl, using 0.7M D-mannitols as osmoticum and using macerozyme and cellulase respectively for maceration and digestion of the cell wall. Production in large number of naked intact protoplast was rather difficult as compared with other plant species. Fusion of protoplasts occurred infrequently mainly due to the fewer number of naked protoplasts in the solution.

  • PDF

The Effect of Nitrogen Supply on Tomato Plants by NH4-Beaker-Deposits (토마토에 대한 NH4-Beaker Deposit 비료의 질소공급 효과)

  • Chang, Kyong-Ran;Somrner, Karl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.1
    • /
    • pp.8-14
    • /
    • 2000
  • Long term cultivation crops like tomato, capsicum, melon etc. demand much amount of continuous supplying of nutrition during the whole growing periods. It is not easy to cover satisfactorily the nutritional demands for them by splitted top dressings, slow release fertilizer applications and fertigation systems. To overcome these problems, the "CULTAN" (Controlled Uptake Long Term Ammonium Nutrition) Beaker Deposit techniques have been developed and it was put into PVC beaker with the combined nitrogen fertilizer type mixed with the ratio of one-third of ammonium sulfate-N and two-thirds of urea-N, in which nitrogen was loaded on the demanding amount of a tomato plant during the growing period. Gypsum was mixed as a binder, and loamy soil and compost were used as a diffusion regulator. It was placed upside down into root zone of tomato at the transplanting. Tomato roots were spreaded into the Deposit beaker by ammonium ions which attract root growth. The tomato fruit yield and nitrogen uptake by plant were increased by application of $NH_4$-Beaker deposit fertilizer rather than those of common fertilizer treatment. In conclusion, it was able to improve economic and ecological benefits through CULTAN system compared with common fertilization systems. CULTAN system was estimated as a prospective alternative to enhance productivity and minimize nutrient lose. In addition, it shows further developing possibility of CULTAN system by the supplement of micro-nutrients and pesticides in the macro-nutrient beaker deposits.

  • PDF

Cutting Efficiency Using Phragmites australis Culms According to Content and Timing of Indole-acetic Acid Treatment (옥신 처리 농도 및 시기에 따른 갈대 지상경 삽목 효율)

  • Hong, Mun-Gi;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we tried to overcome a limit in cutting timing of reed culm by applying a plant hormone, indole-acetic acid (IAA) as a growth regulator with various contents ($10^{-3}$ M, $10^{-6}$ M, $10^{-9}$ M, $10^{-12}$ M). 19 shoots emerged from 240 segments of hardened reed culm from montane fen and eight out of the 19 shoots emerged by $10^{-6}$ M IAA treatment as the most in $5^{th}$ Sep. 2012. 50 shoots emerged from 60 segments of non-hardened reed culm from a population in Seoul National University transplanted from Mt. Odae by $10^{-6}$ M IAA treatment despite the cutting was performed about two weeks later ($19^{th}$ Sep.). Via third cutting experiment performed about 40 days later ($29^{th}$ Oct.), only two shoots out of 60 segments were observed by the same experimental condition except atmospheric temperature. It seemed likely that it was too low temperature in third experiment ($10^{\circ}C$) than the former experiments (about $20^{\circ}C$) to form adventitious buds from culm segment. We recommend to utilize the thick reed culm in culm cutting as possible because the thicker culm segment we used, the thicker emerged shoot we could observe (i.e., diameters of emerged shoots were about 20% of the planted segment's diameters).

Current research on seed oil biosynthesis (식물 종자지방 합성대사 연구의 최근 동향)

  • Kim, Hyun Uk;Lee, Kyeong-Ryeol;Kim, Eun Ha;Jung, Su-Jin;Roh, Kyung Hee;Kang, Han Chul;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • Seed oils (triacylglycerols) of plants are used as a source of essential fatty acids and nutrition for human. In addition, triacylglycerols have been used as industrial raw materials and biofuels. Triacylglycerols are mainly accumulated in seeds by complicated biochemical pathways. Fatty acids are synthesized in the plastids and transported into the endoplasmic reticulum for synthesizing triacylglycerols. It is known for a long time that biosynthesis of triacylglycerols is performed by a de novo synthesis, the Kennedy pathway. However recent studies have revealed that phosphatidylcholine, a major component of cell membrane, plays a central role for triacylglycerols biosynthesis. Phosphatidylcholine is a key regulator determining the relative proportions of unsaturated fatty acids in seeds. It may be a major carrier for the fluxes of fatty acids from the plastid to the endoplasmic reticulum. This finding further suggests that studies of the functions of enzymes involved in the fluxes of fatty acids from phosphatidylcholine to triacylglycerols elucidate the specialized subdomains in the endoplasmic reticulum for triacylglycerols biosynthesis.

Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance

  • Kim, Jung-A;Cho, Kyoungwon;Singh, Raksha;Jung, Young-Ho;Jeong, Seung-Hee;Kim, So-Hee;Lee, Jae-eun;Cho, Yoon-Seong;Agrawal, Ganesh K.;Rakwal, Randeep;Tamogami, Shigeru;Kersten, Birgit;Jeon, Jong-Seong;An, Gynheung;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.431-439
    • /
    • 2009
  • Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-of-function and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.

Effects of Plant Growth Regulators Sprayed at Unfolded Leaf Stage on Fruit Quality in 'Campbell Early' Grape (포도 '캠벨얼리' 품종의 전엽기 생장조절제 처리가 품질에 미치는 영향)

  • Chun, Jong-Pil;Kim, Byung-Ki;Bae, Tae-Min;Oh, Kyung-Young;Kim, Jin-Gook
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.9-15
    • /
    • 2012
  • This study was conducted to increase grape quality by treating plant growth regulator (PGR) in 'Campbell Early' grape. Foliar application of gibberellic acid ($GA_3$) at $5mg{\cdot}L^{-1}$ on flower cluster of 'Campbell Early' grape at 3-5 unfolded leaf stage effectively increased columella length, berry weight, soluble solid contents and promoted skin color development. Foliar application of $20mg{\cdot}L^{-1}$ abscisic acid (ABA) mixed with $5mg{\cdot}L^{-1}$ of $GA_3$ on flower cluster of 'Campbell Early' grape at 3-4 unfolded leaf stage effectively increased skin anthocyanin contents without any detrimental effects on berry enlargement and columella growth. Foliar application of $2.5mg{\cdot}L^{-1}$ thidiazuron mixed with $5mg{\cdot}L^{-1}$ of $GA_3$ on flower cluster of 'Campbell Early' grape at 3-4 unfolded leaf stage effectively increased fruit quality indices such as higher soluble solid contents and less titratable acidity.