• Title/Summary/Keyword: Plant Projects

Search Result 329, Processing Time 0.026 seconds

Compression Strength Behavior of Mixed Soil Recycling Bottom Ash for Surface Layer Hardening (매립석탄회를 재활용한 표층연약지반 개량용 혼합토의 압축강도 특성 연구)

  • Oh, Gi-dae;Kim, Kyoung Yul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.287-293
    • /
    • 2019
  • Domestic thermal power plant fly ash is at a situation which emissions are increasing every year. Comparing to Fly Ash, Bottom Ash is only 15 %, but it's recycling rate is low, so most of them is being buried in the ground. However, landfill site of every power plant is full, and the construction of a new landfill is difficult. To solve this problem, the best solution is to use Bottom Ash as a landfill of large-scale civil engineering projects. The purpose of this study was to investigate the compression strength behavior characteristics of weak clay and uniaxial compression test to examine the applicability of surface soil solidification method of mixed soils mixed with industrial waste coal ash and weak clay which is buried in bulk. As a result of the test, the fluidity of the Mixed soil with clay + bottom ash + cement was improved to 200 mm at the water content of 91-92 %. The uniaxial compressive strength was also good for the mixed soils (clay + bottom ash + cement) meeting the required strength of 159 kN/㎡ at 28 days. However, the other samples did not meet the required strength. In this study, the prediction equations for the compression strength behavior by cement and curing period were presented.

Vegetation Characteristics of Geumnamhonam·Honam Ridge Areas Understood through Quantitative Vegetation Analysis (정량적 식생분석을 통한 금남호남·호남정맥 마루금 일대의 식생 특성)

  • Park, Seok-Gon;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.304-317
    • /
    • 2020
  • This study conducted selected two sites in Geumnamhonam and four sites in Honam-Jeongmaek for vegetation survey with consideration to the location environment and anthropogenic impacts to investigate the vegetation structures of the Geumnamhonam-Jeongmaek·Honam-Jeongmaek ridge areas. Using TWINSPAN (two-way indicator species analysis), each of the two ridge areas were categorized into seven plant communities. The differential species in the TWINSPAN technique indirectly represent the environmental factors of plant communities, and the community types of the two ridge areas were divided based on environmental factors such as altitudes above sea level, soil moisture, and disturbance. These results were in harmony with the environmental factors of the DCA (detrended correspondence analysis) axis 1. In the low-lying areas of both ridge areas, afforestation tree species such as Pinus rigida and P. thunbergii were in competition with native tree species. As such, in the low-lying areas, artificial vegetation disturbance was severe due to afforestation and development projects. In relatively highland areas, such as upper slopes, and top areas, in the ridge, the vegetation type with the dominance of Quercus mongolica, Q. variabilis, and P. densiflora was preserved well. As for differences between the two ridge areas, communities dominated by Q. mongolica were distributed widely in Geumnamhonam-Jeongmaek because of the altitudes above sea level, and the latitude of this ridge area are higher than those of Honam-Jeongmaek. On the other hand, communities dominated by P. densiflora were distributed along with communities dominated by Q. mongolica, and communities dominated by Q. variabilis appeared in Honam-Jeongmaek because it is adjacent to the south coast. In quantitative vegetation analysis such as TWINSPAN and DCA, changes in species composition and the extracting environmental factors that cause the changes are important. To that end, the removal of accidental emergent species, the establishment of an investigation plan that assumes environmental factors, and the selection of the optimal analytical method suitable for the characteristics of the survey data are necessary.

Comparison of Physicochemical Properties of Topsoil from Forest Development and Non-Development Area (산지개발지역과 비개발지역 표토의 이화학적 특성 비교)

  • Kim, Won-Tae;Yoon, Yong-Han;Cho, Yong-Hyeon;Kang, Hee-Kyoung;Park, Bong-Ju;Shin, Kyung-Jun;Eo, Yang-Joon;Yoon, Taek-Seong;Jang, Kwang-Eun;Kwak, Moo-Young
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1389-1394
    • /
    • 2012
  • This study was carried out to evaluate the physicochemical properties of topsoil from forest development area. The results of physicochemical properties of topsoil from forest development area shown on the average loamy sand~sandy clay loam in soil texture, 5.3~7.1 in pH, 0.02~0.18 dS/m in EC, 0.7~1.8% in OM, 0.03~0.11% in T-N, 11~15 $cmol^+/kg$ in CEC, 0.02~0.04 $cmol^+/kg$ in $K^+$, 4.51~8.18 $cmol^+/kg$ in $Ca^{2+}$, 0.93~2.77 $cmol^+/kg$ in $Mg^{2+}$, 6~49 mg/kg in available phosphate. And the results of physicochemical properties of topsoil from forest non-development area shown on the average sandy loam~sandy clay loam in soil texture, 4.4~5.3 in pH, 0.03~0.05 dS/m in EC, 3.1~4.6% in OM, 0.13~0.23% in T-N, 14~18 $cmol^+/kg$ in CEC, 0.02~0.04 $cmol^+/kg$ in $K^+$, 0.78~3.82 $cmol^+/kg$ in $Ca^{2+}$, 0.29~1.31 $cmol^+/kg$ in $Mg^{2+}$, 3~31 mg/kg in Av. $P_2O_5$. On the other hand, forest development area of topsoil sand content higher than 8~18% sand content than the forest non-development area. This trend is thought to be the absence of topsoil management development projects. Consequently, the results suggested a high potential of recycling of the topsoil from forest non-development area for planting soil. Therefore, in construction of the conservation and management of topsoil from forest non-development area is very important.

Analysis of Advanced Rate and Downtime of a Shield TBM Encountering Mixed Ground and Fault Zone: A Case Study (단층대와 복합지반을 통과하는 쉴드TBM의 굴진율 및 다운타임 발생 특성 분석)

  • Jeong, Hoyoung;Kim, Mincheol;Lee, Minwoo;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.394-406
    • /
    • 2019
  • Difficult ground conditions (e.g., fault zone and mixed grounds) are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. TBM usually experienced decrease of penetration rate and increase of downtime when it meets these difficult ground conditions. The problems are usually caused by the adverse geological conditions, and it is preferable to determine the optimal operational parameters of TBM based on the previous operational data obtained while excavating a preceding tunnel. This study carried out for efficient TBM excavation in fault zone and mixed grounds. TBM excavation data from the tunnel site in Singapore and the characteristics of the TBM excavation data was analyzed. The key operational parameters (i.e., thrust, torque, and RPM), penetration rate, and downtime were highly influenced by the presence of fault zones and mixed grounds, and the features was discussed. It is expected that the results and main discussions will be useful information for future tunneling projects in similar geological conditions.

Introduction of Alien Plants on the Fill and Cut Slopes of the Road Construction in South Korea (우리나라에서 도로 공사장의 성토사면과 절토사면에서 외래식물의 도입)

  • Chu, Yeounsu;Jin, Seung-nam;Son, Deokjoo;Park, Shinyeong;Cho, Hyungjin;Lee, Hyohyemi
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.191-199
    • /
    • 2019
  • Road development is considered an important factor in invasion and dispersion of ailen plants by damaging the natural ecosystems and connecting the detached landscapes into long tubular structures. In this study, vegetation survey was carried out according to the topographical characteristics of cut slope, fill slope, and flat land at the construction site in order to understand the effect of road developemt on the change of the floristic composition of ailen plants. Road developement projects caused a lot of changes in annual and biennial alien plants because of continuous disturbances. Changes in species composition of alien plants decreased in the cut slope. On the other hand, the ailen palnts of the fill slope increased. The increase or decrease alien plants on flat land were identified depending on where it occurred, and no major trend was found. The cause of these change was driven by unintentionally introduced alien plants. In particular, the cut slope with a high occurence of unintentional ailen plants should not be used as a source of high-risk alien plants such as ecosystem disturbances. Since the transplanted species were intentionally planted by the landscape plan, it was possible to identify colonies from early stages and spread to the nearby flat land. Therefore, in order to minimize the impact of road slope vegetation on the surrounding ecosystem during and after road construction, it is suggested to plant high viability plants in the landscape design during the environmental impact assessment consultation.

Strength degradation of a natural thin-bedded rock mass subjected to water immersion and its impact on tunnel stability

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Wu, Yongjin;He, Jun
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Strength anisotropy is a typical feature of thin-bedded rock masses and their strength will be degraded subjected to water immersion effect. Such effect is crucial for the operation of hydropower plant because the impoundment lifts the water level of upstream reservoir and causes the rock mass of nearby slopes saturated. So far, researches regarding mechanical property of natural thin-bedded rock masses and their strength variation under water immersion based on field test method are rarely reported. This paper focuses on a thin-bedded stratified rock mass and carries out field test to investigate the mechanical property and strength variation characteristics. The field test is highlighted by samples which have a large shear dimension of 0.5 m*0.5 m, representing a more realistic in-situ situation than small size specimen. The test results confirm the anisotropic nature of the concerned rock mass, whose shear strength of host rocks is significantly larger than that of bedding planes. Further, the comparison of shear strength parameters of the thin-bedded rock mass under natural and saturated conditions show that for both host rocks and bedding planes, the decreasing extent of cohesion values are larger than friction values. The quantitative results are then adopted to analyze the influence of reservoir impoundment of a hydropower plant on the surrounding rock mass stability of diversion tunnels which are located in the nearby slope bank. It is evaluated that after reservoir impoundment, the strength degradation induced incremental deformations of surrounding rock mass of diversion tunnels are small and the stresses in lining structure are acceptable. It is therefore concluded that the influences of impoundment are small and the stability of diversion tunnels can be still achieved. The finings regarding field test method and its results, as well as the numerical evaluation conclusions are hoped to provide references for rock projects with similar concerns.

Competency Assessment of Korean Construction Firms on International Plant Projects (국내 기업의 경쟁력 및 업무역량 분석 - 해외 플랜트 사업을 중심으로 -)

  • Jang, Hyoun-Seung;Lee, Bok-Nam;Choi, Seok-In;Koo, Bon-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.4
    • /
    • pp.173-181
    • /
    • 2008
  • Last decade, Korea's export scale has resulted in remarkably increasing tendency, and the Korean construction firms(KCFs)' activities on the global markets also have been revitalized. Therefore, this paper analyze a correlation between changes in the oversee market conditions and firms' competitiveness focused on plant business. The aim of this paper is to analyze the internal competency change of the KCFs on the global markets in the past 5 years and to find gap of internal competencies between KCFs and outstanding foreign firms. From a survey analysis this paper found that the external impacts on the global markets(changes of exchange rates, raw materials prices, supply-demand conditions, etc.) have highly influenced the sales amount of the KCFs. But the impacts to change the operating profit have been analyzed as not important. So it is necessary to reinforce the KCF's internal competencies rater than expecting an improvement of the external conditions. Also, the KCFs should strengthen the design engineering as a core competency.

Effects of Concrete Materials for the Stream Restoration on Bombina orientalis Embryos (하천복원용 콘크리트 소재가 무당개구리 (Bombina orientalis) 배아에 미치는 영향)

  • Park, Chan Jin;Ahn, Hong Kyu;Gye, Myung Chan;Lee, Tae Hyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.147-153
    • /
    • 2015
  • Various adverse effects can occur due to direct exposure from toxic substances when toxic materials are used to restore river ecosystems. Thus, this study performed analysis on the development of toxicity in terms of survival and abnormality rates using embryos of Bombina orientalis living in Korea to analyze the toxicity of materials used in the river projects. The results showed that the toxicity in cement (C group) was the strongest whereas the toxicity in plant-based polyurethane (P1 group) was the weakest. Survival rates of B. orientalis embryos were 100%, 94 - 95%, 66 - 89% and 0% in control, P1, polyurethane (P2) and C groups, respectively. Abnormalities of embryos were 10.5%, 5.3 - 10.5%, 26.3 - 27.8% and 35.7% in control, P1, P2 and C groups, respectively. Furthermore, we verified that having a sufficient curing time reduced toxic substances that were extracted. The above result suggest that cement and polyurethane hamper the early development of amphibians. In conclusion, it is highly important to review biological safety with respect to the selection of materials used to restore rivers. This study shows the importance of the selection of eco-friendly materials and processes.

POTENTIAL APPLICATIONS FOR NUCLEAR ENERGY BESIDES ELECTRICITY GENERATION: A GLOBAL PERSPECTIVE

  • Gauthier, Jean-Claude;Ballot, Bernard;Lebrun, Jean-Philippe;Lecomte, Michel;Hittner, Dominique;Carre, Frank
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will be developed. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source tree of Greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated electric plant. Depending on the process heat temperature and power needs, up to 80% of the nuclear heat is converted into useful power. An important feature of the design is the standardization of the heat source, as independent as possible of the process heat application. This should expedite licensing. The essential conditions for success include: ${\bullet}$ Timely adapted licensing process and regulations, codes and standards for such application and design ${\bullet}$ An industry oriented R&D program to meet the technological challenges making the best use of the international collaboration. Gen IV could be the vector ${\bullet}$ Identification of an end user(or a consortium of) willing to fund a FOAK

A study for recycling plan of excavated soil and filter cake of slurry shield TBM for road construction (도로공사 이수식 쉴드 TBM 굴착토 및 필터케이크 재활용방안 연구)

  • Nam, Sung-min;Park, Seo-young;Ahn, Byung-cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.599-615
    • /
    • 2022
  • In order to excavate underground tunnel most safely such as Han river, the slurry shield TBM method is applied to cope with face of high water pressure for many metro projects. In downtown subway project most of excavated soil is discharged externally whereas in road construction excavated soil is used as filling materials so it becomes important factor for success of the project. After excavated soil, weathered rock and soft rock are discharged with bentonite through discharge pipe to slurry treatment plant then those soils are separated in separation plant according to those size. Fine grained soil has been discarded together with filter cake but it is not toxic and can be mixed with coarse aggregate in proper ratio so this study is performed to find use of qualified filling material to meet quality standard. Therefore, in this study, legal standards and quality standards for the utilization of excavated soil of the slurry shield TBM method were examined and test was conducted to derive recycling way for filter cake and aggregate. And a plan for using it as a filling material for road construction was derived. Because bentonite is a clay composed of montmorillonite, and the excavated soil in the tunnel is also non-toxic, disposal of this material can waste social cost so it is expected to be helpful in the underground space development project that carries out the TBM project by recycling it as a valuable resource.