• Title/Summary/Keyword: Plant Operations

Search Result 369, Processing Time 0.023 seconds

Effects of Sewage Treatment on Characteristics of Sludge as a Composting Material (하수처리가 퇴비화를 위한 하수 슬러지 특성에 미치는 영향)

  • Kim, Jae-Koo;Kim, Jong-Soo
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.181-186
    • /
    • 1998
  • The effects of sewage treatment on characteristics of sludge as a composting material were investigated for a year during the initial operation at the full-scale Chunan sewage treatment plant. Due to the shortage of design capacity of belt press, a sludge dewatering unit, non-volatile solids were recirculating and concentrating in the treatment plant, resulting in an increase of MLSS and a decrease in F/M ratio at the activated sludge system. Special attention is required for long term operations since the increase of non-volatile solids in the plant would deteriorates the treatment efficiency. The sewage sludge of the Chunan sewage treatment plant showed 79.5% of water content, 11.6% of organic content, and C/N ratio of 6.1, and contained As 1.8 mg/kg, Cd 27 mg/kg, Hg <0.1 mg/kg, Pb 54 mg/kg, T-Cr 370 mg/kg, and Cu 1,100mg/kg of heavy metals. In order to be used as raw material for optimum composting, the sewage sludge requires bulking agents for moistrure/porosity control and a carbon source for adjusting C/N ratio. However, the sewage sludge is not adequate as a soil conditioner after composing due to a high content of heavy metals. If the sewage sludge has to he used as a soil conditioner after composting, it as required to identify and remove tire industrial wastewater portions in tire influent of the plant since heavy metals in the influent were mostly concentrated in dewatered sludge.

  • PDF

Automation Development in Water and Wastewater Systems

  • Olsson, Gustaf
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.197-200
    • /
    • 2007
  • Advanced control is getting increasingly demanded in water and wastewater treatment systems. Various case studies have shown significant savings in operating costs, including energy costs, and remarkably short payback times. It has been demonstrated that instrumentation, control and automation (ICA) may increase the capacity of biological nutrient removing wastewater treatment plants by 10-30% today. With further understanding and exploitation of the mechanisms involved in biological nutrient removal the improvements due to ICA may reach another 20-50% of the total system investments within the next 10-20 years. Disturbances are the reason for control of any system. In a wastewater treatment system they are mostly related to the load variations, but many disturbances are created also within the plant. In water supply systems some of the major disturbances are related the customer demand as well as to leakages or bursts in the pipelines or the distribution networks. Hardly any system operates in steady state but is more or less in a transient state all the time. Water and energy are closely related. The role of energy in water and wastewater operations is discussed. With increasing energy costs and the threatening climate changes this issue will grow in importance.

Robust control of reheat-fan engine

  • Watanabe, R.;Kurosaki, M.;Uchida, K.;Shimemura, E.;Fujita, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.351-354
    • /
    • 1993
  • In this paper, reheat-fan engine is described as class of models constructed from nominal and uncertainty model for robust control. In this class of models, uncertainty model consists of structured and unstructured uncertainty, and each model is identified from nonlinear simulation using FFT and ML technique. Then, control requirements and augmented plant are specified. H$_{\infty}$ controller satisfying the control requirements is designed by using constant scaling matrix. Finally, efficacy of the H$_{\infty}$ controller is showed by computer simulation.n.

  • PDF

Prepurification of paclitaxel by micelle and precipitation

  • Seong, Ju-Ri;An, Hui-Bun;Kim, Jin-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.501-504
    • /
    • 2003
  • A novel prepurification method was developed aiming at increasing yield and purity, also reducing solvent usage for purification of paclitaxel. This method was a simple and efficient procedure, for the isolation and prepurification of paclitaxel from the biomass of Taxus chinensis, consisting of micelle formation, followed by two steps of precipitation. The use of a micelle and precipitation in the prepurification process allows for rapid separation of paclitaxel from interfering compounds and dramatically reduces solvent usage compared to alternative methodologies. This prepurification process serves to minimize the size and complexity of the HPLC operations for paclitaxel purification. This process is readily scalable to a pilot plant and eventually to a production environment where multikilogram quantities of material are expected to be produced. As much as possible, the process has been optimized to minimize solvent usage, complexity, and operating costs.

  • PDF

Dynamic analysis of short circulation with OPR prediction used neural network (Neural network을 이용한 OPR예측과 short circulation 동특성 분석)

  • Jeon, Jun-Seok;Yeo, Yeong-Gu;Park, Si-Han;Gang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.86-96
    • /
    • 2004
  • Identification of dynamics of short circulation during grade change operations in paper mills is very important for the effective plant operation. In the present study a prediction method of One Pass Retention(OPR) is proposed based on the neural network. The present method is used to analyze the dynamics of short circulation during grade change. Properties of the product paper largely depend upon the change in the OPR. In the present study the OPR is predicted from the training of the network by using grade change operation data. The results of the prediction are applied to the modeling equation to give flow rates and consistencies of short circulation.

  • PDF

Modeling of Grade Change Operations in Paper Plants

  • Ko, Jun-Seok;Yeo, Yeong-Koo;Ha, Seong-Mun;Ko, Du-Seok;Kang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.11a
    • /
    • pp.291-305
    • /
    • 2003
  • In this work we developed the closed-loop model of a paper machine during grade change with the intention to provide a reliable dynamic model to be used in the model-based grade change control scheme. During the grade change, chemical and physical characteristics of paper process change with time. It is very difficult to represent these characteristics on-line by using physical process models. In this work, the wet circulation part and the drying section were considered as a single process and closed-loop identification technique was used to develop the grade change model. Comparison of the results of numerical simulations with plant operation data demonstrates the effectiveness of the model identified.

  • PDF

Virtual Manufacturing for an Automotive Company(III) - Construction and Operation of a Virtual Paint Shop (자동차 가상생산 기술 적용(III) - 가상 도장공장구축 및 운영)

  • Noh, Sang-Do;Kim, Duck-Young;Park, Young-Jin
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.356-363
    • /
    • 2002
  • Virtual Manufacturing is a technology to facilitate effective product development and agile production by computer models representing the physical and logical schema and the behavior of real manufacturing systems including manufacturing resources, environments and products. For the successful application of this technology, a virtual factory as a well-designed and integrated environment is essential. In this research, we constructed a sophisticated virtual factory model of an automotive company's paint shop, and performed precise simulations of unit cells, lines and whole plant operations for collision check and off-line programming. It is expected that this virtual paint shop is useful for achieving time and cost savings in many manufacturing preparation and planning activities of new car development processes.

Plant Operations System 구축을 통한 공장 자동화

  • 유중원;안정삼
    • The Magazine of the IEIE
    • /
    • v.18 no.12
    • /
    • pp.59-64
    • /
    • 1991
  • 오늘날 기업들은 국제 시장에서 보다 효과적으로 경쟁하기 위해서 도전하고 있다. 품질 향상, 제조 원가 절감, lead time 단축, 급속히 변하는 시장 요구에 대응하기 위해 다각도로 경주를 하고 있다고 할 수 있다. 상품과 services에 있어서는 국제 규격에 달해야 하고 영업에 있어서도 세계시장으로 뛰어 들어야 하기 때문에 국내나 경제 block 내에서의 경쟁은 그 의미가 훨씬 줄어 들고 있다. 상품과 services를 통한 시장확보를 위한 경쟁은 선진기업은 물론 새로이 급속하게 부상하는 기업들과 더불어 날로 심해가고 있다. 이에 도전하기 위한 수단으로써 공장 자동화를 제조업에 있어서 사활을 건 기업전략으로 추진하고 있는 기업들이 늘고 있고, 선진 제조업체에서는 무인 자동화까지 이룩한 회사들도 점점 그 수를 더해가고 있다. 공장자동화(factory automation)란 무엇이고 어떻게 실현해야 하는가에 대해서 간단히 기술하고자 하니 참고될 것으로 기대한다.

  • PDF

Engineering Technology Far-end Telecontrol Cathodic Protection on the Structure of Jetty Bridge Cap Beams

  • Liu, Yi-Hsiung;Lim, Pau-Yee;Shih, Chien-Chis
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 2003
  • 23 cap beams on the 1 Km length jetty bridge in Shin-da power plant (Taipower co., Taiwan) utilize far-end telecontrol cathodic protection technology which is the first case ever used in Taiwan. The system comprises cathodic protection system and te1econtrol monitoring system. The control and monitoring such as protection current adjustment, protection potential and depolarization measurement of the 23 cap beams can be adjusted through system telecontrol operations. Thereby allows monitoring and control of the 23 anode zones in a convenient and cost effective way. This system is at present still in its best running condition since Sept. 1997 when it was completed. All the 23 cap beams can achieve the 100 mV depolarization potential criteria of protection. It meet the specifications of reinforced concrete cathodic protection standard and proved to be very excellent.

Application of ecological interface design in nuclear power plant (NPP) operator support system

  • Anokhin, Alexey;Ivkin, Alexey;Dorokhovich, Sergey
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.619-626
    • /
    • 2018
  • Most publications confirm that an ecological interface is a very efficient tool to supporting operators in recognition of complex and unusual situations and in decision-making. The present article describes the experience of implementation of an ecological interface concept for visualization of material balance in a drum separator of RBMK-type NPPs. Functional analysis of the domain area was carried out and revealed main factors and contributors to the balance. The proposed ecological display was designed to facilitate execution of the most complicated cognitive operations, such as comparison, summarizing, prediction, etc. The experimental series carried out at NPPs demonstrated considerable reduction of operators' mental load, time of reaction, and error rate.