• Title/Summary/Keyword: Plant Operation & Maintenance

Search Result 243, Processing Time 0.023 seconds

Effect of test-caused degradation on the unavailability of standby safety components

  • S. Parsaei;A. Pirouzmand;M.R. Nematollahi;A. Ahmadi;K. Hadad
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.526-535
    • /
    • 2024
  • This paper proposes a safety-critical standby component unavailability model that contains aging effects caused by the elapsed time from installation, component degradation due to surveillance tests, and imperfect maintenance actions. An application of the model to a Motor-Operated Valve and a Motor-Driven Pump involved in the HPIS of a VVER/1000-V446 nuclear power plant is demonstrated and compared with other existing models at component and system levels. In addition, the effects of different unavailability models are reflected in the NPP's risk criterion, i.e., core damage frequency, over five maintenance periods. The results show that, compared with other models that do not simultaneously consider the full effects of degradation and maintenance impacts, the proposed model realistically evaluates the unavailabilities of the safety-related components and the involved systems as a plant age function. Therefore, it can effectively reflect the age-dependent CDF impact of a given testing and maintenance policy in a specified time horizon.

A development of reliability evaluation model for power plant fan pitch blade control actuator (발전설비 통풍기 날개각 제어작동기 신뢰성평가 모델 개발)

  • Son, Tae-Ha;Huh, Jun-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3259-3263
    • /
    • 2007
  • This paper describes the proceedings of creating countermeasures after analysis and maintenance be able to conduct operation safely in a power plant. in order to operate the power plant in a stable and reliable way, the best condition of the govemor system can be maintained through the response characteristic analysis of the control device for the pitch blade control hydraulic actuator. The fan pitch blade control hydraulic actuator of a 500MW large-scale boiler is frequently operated under normal operation conditions. Common problems or malfunctions of the pitch blade control hydraulic actuators leads to the decline of boiler thermal efficiency and unexpected power plant trip. The inlet and outlet gas can be controlled by using the fan pitch blade control hydraulic actuator in order to regulate the internal pressure of the furnace and control the frequency in the power plant facility which utilizes soft coals as a power source.

  • PDF

Hydraulic and structural considerations of dam's spillway - a case study of Karkheh Dam, Andimeshk, Iran

  • Faridmehr, Iman;Jokar, Mohammad Javadi;Yazdanipour, Mohammadreza;Kolahchi, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • Preserving reservoir safety has recognized to be important for the public where a vast majority of dams are located upstream of greatly populated cities and industrialized areas. Buckling, floatation and cavitation have caused failure in the spillway gates and conveyance features during past catastrophic events; showed their vulnerability and need for regular inspection along with reviewing design calculations to ensure the spillway meet current design standards. This paper investigates the hydraulic and structural consideration of dam's spillway by evaluating the data of Karkheh Dam's. Discharge capacity, flood routings and cavitation damage risk were main features for hydraulic considerations where hydrostatic and hydrodynamic forces and stability conditions were considered in structural considerations.

Estimating Maintenance Cost by Actual Database Based on Operation in Sewage Treatment Plant (하수처리장 실적데이터베이스를 활용한 유지관리비용 예측)

  • Lee, Tai-Sik;Kwak, Dong-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2803-2809
    • /
    • 2009
  • For a successful construction project not only construction engineering and project management technology but also economic evaluation technique is required. Design and construction technologies are necessary to receive a project order. However, construction management technology which can be apply from the project initial phase to the project operation and management phase is required to create a benefit from the project. Construction management technology is one of the effective factors for project success. Economical and efficient cost management from the planning phase influences the project success. This study investigated cost flow and cost factors of domestic Sewage Treatment Plant project for systematic analysis of cost items following the entire project phase. Particularly, data modeling based on domestic Sewage Treatment Equipment maintenance cost DB was performed, and maintenance cost estimation trend line is suggested using Monte carlo Simulation Method to decrease uncertainty of actual results DB and for feasibility study. Korea Academia-Industrial cooperation Society. The Korea Academia-Industrial cooperation Society. The Korea Academia-Industrial cooperation Society. The Korea Academia-Industrial cooperation Society.

Flexible operation and maintenance optimization of aging cyber-physical energy systems by deep reinforcement learning

  • Zhaojun Hao;Francesco Di Maio;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1472-1479
    • /
    • 2024
  • Cyber-Physical Energy Systems (CPESs) integrate cyber and hardware components to ensure a reliable and safe physical power production and supply. Renewable Energy Sources (RESs) add uncertainty to energy demand that can be dealt with flexible operation (e.g., load-following) of CPES; at the same time, scenarios that could result in severe consequences due to both component stochastic failures and aging of the cyber system of CPES (commonly overlooked) must be accounted for Operation & Maintenance (O&M) planning. In this paper, we make use of Deep Reinforcement Learning (DRL) to search for the optimal O&M strategy that, not only considers the actual system hardware components health conditions and their Remaining Useful Life (RUL), but also the possible accident scenarios caused by the failures and the aging of the hardware and the cyber components, respectively. The novelty of the work lies in embedding the cyber aging model into the CPES model of production planning and failure process; this model is used to help the RL agent, trained with Proximal Policy Optimization (PPO) and Imitation Learning (IL), finding the proper rejuvenation timing for the cyber system accounting for the uncertainty of the cyber system aging process. An application is provided, with regards to the Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED).

Application and Maintenance Strategies for Eco-Friendly Facilities in Landscape Trees Nurseries

  • Young Sun Seok;O Man Kwon;Yun Eui Choi
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.2
    • /
    • pp.151-165
    • /
    • 2024
  • Recently, as the number of landscaping plant nurseries have increased, environmental problems such as topographical damage due to indiscriminate changes in land use, increased non-point pollution, and increased impervious areas are also occurring. In this study, we propose eco-friendly facilities and a detailed maintenance manual that can enhance the eco-friendliness and scenic beauty of landscaping plant nurseries that are increasingly located near cities. By exploring previous reports on eco-friendly facilities and related laws, we cataloged the types of eco-friendly facilities, and by referring to examples of eco-friendly facilities introduced in overseas cases and the environmental functions of agriculture, we cataloged the types of eco-friendly facilities suitable for introduction in plant nurseries. The selected facilities are rain gardens, tree boxes, vegetated filter beds, bio-retention, infiltration trench, infiltration tanks, permeable pavements, and sand filtration systems. The maintenance tasks of eco-friendly facilities were categorized and management plans were proposed, which is expected to be utilized as a basic data to prepare eco-friendly space planning and operation management plans when creating a landscape plant nurseries in the future.

Safety Assessment for Emergency Diesel Generator(EDG) Allowed Outage Time(AOT) Extension using Risk-informed (리스크정보를 활용한 비상디젤발전기 허용정지시간 연장시 안전성평가)

  • Lim, Hyuk-Soon;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.118-122
    • /
    • 2010
  • In order to provide the necessary operation flexibility during the Nuclear power operation, the extension of existing allowed outage time(AOT) is needed. The extension of AOT affects the Nuclear power plant safety. The validity of changed technical specification requirements should be proved by the safety assessments. In this paper, we evaluated the extension of emergency diesel generator AOT for a single inoperable emergency diesel generator(EDG) from 3days to 7days, 10days and 14days. Finally, the AOT extension contributes the NPP performances through decreasing the unexpected plant trips, reinforcing maintenance and avoiding risks due to unnecessary operation mode changes when the NPP is under the surveillance tests or maintenance.

Case Study for Development of Maintenance System for Equipment of LNG-FPSO Topside (LNG-FPSO Topside 장비를 위한 보전시스템 개발을 위한 사례 연구)

  • Lee, Soon-Sup;Kim, Jong-Wang
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.533-539
    • /
    • 2014
  • A maintenance system for an offshore plant uses an optimal maintenance method, process, and period based on operation information data and economic evaluation techniques. Maintenance is performed after one or more indicators show that equipment is going to fail or that equipment performance is deteriorating. A maintenance system is based on the use of real-time data to prioritize and optimize the LNG-FPSO topside equipment resources.

A Method for Determining Appropriate Maintenance Intervals of Equipments in Thermal Power Stations

  • Nakamura, Masatoshi;Katafuchi, Tatsuro;Hatazaki, Hironori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.312-317
    • /
    • 1998
  • Reliable maintenance scheduling of main equipments is a crucial problem in thermal power stations in order to skirt overall losses of power generation resulted from severe failures of the equipments. A reasonable method was proposed to determine the maintenance scheduling of whole pump system in thermal power stations in order to reduce the maintenance cost by keeping the present avail-ability of the pump system throughout the operation. The dimensional reduction method was used to solve problems encountered due to few data which involved many operational factors in failure rate of pumps. The problem of bandlimited nature of data with time was solved by extrapolating future failures from presently available actual data with an aid of Weibull distribution. The results of the analysis identified the most suitable maintenance intervals of each pump type accordingly and hence reduce the cost of unnecessary maintenance with an acceptable range in the overall system availability.

  • PDF

Development and Field Assessment of DO Control System in an Aeration Tank for Automation of Sewage Treatment Plant

  • Jung, In-Chul;Kim, Dae-Yong;Junq, Byung-Gil
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.603-608
    • /
    • 2009
  • Activated sludge sewage treatment processes are difficult to be controlled because of their complex and nonlinear behaviour, however, the control of the dissolved oxygen level in the reactors plays an important role in the operation of the facility. For this reason, this study is designed to present a system which accurately measures DO, MLSS, pH and ORP in the aeration tank to alleviate situations above and provide the automatization of a sewage treatment plant (STP) using new DO control system. The automatic control systems must be guaranteed the accuracy. Therefore, the proposed automatic DO control system in this study could be commercial applications in the aeration tanks by means of operating cost analysis and user-friendly for operation and maintenance. We could get accurate data from the lab tank which has water quality checker because there was no vortex and air bubble during the measurement process. Improvement of confidence in the lab tank enabled effective and automatic operation of sewage treatment plants so that operation costs and manpower could be saved. If this result is put in place in every sewage treatment plant nationwide for practical purposes, it is estimated to cost 18.5 million dollars in installing the lab tank and to save 9.8 million dollars in management cost a year, except for cost saved by automation.