• Title/Summary/Keyword: Plant Evaluation

Search Result 2,883, Processing Time 0.031 seconds

Performance Evaluation of Tertiary Post-denitrification Processes for the Reuse of Secondary Effluent from Wastewater Treatment Plant (하수2차처리수의 재이용을 위한 후탈질공정의 평가)

  • Lee, Chanho;Yun, Zuwhan;Yi, Yun Seok;Lee, Han Saem;Ahn, Dong Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.642-649
    • /
    • 2007
  • The effectiveness of add-on tertiary treatment processes for the polishing of the effluent of a biological nutrient removal (BNR) system from a modified $A^2/O$ process has been examined under the field condition with pilot-scale plants. The add-on treatment processes of 1) combined biofilm anoxic reactor and sand filtration, and 2) two-stage denitrification filter had been operated with various operating conditions. The experimental results indicated that two-stage denitrification filter could produced a better polished tertiary effluent. Filtration rate of $150m^3/m^2{\cdot}d$ for the 2-stage denitrifying filter could decrease the nitrate removal probably due to shorter detention time that caused insufficient reaction for denitrification. Two stage denitrification filter operated with M/N ratio of 3.0 and filtration rate of $100m^3/m^2{\cdot}d$ produced the tertiary effluent with nitrate and SS concentraitons of 2.8 mg/L and 2.3 mg/L, respectively. When the operating temperature reduced $30^{\circ}C$ to $18^{\circ}C$, $NO_3{^-}-N$ removal efficiency decreased from 73% to 68%.

ECOLOGICAL RESPONSE OF STREAMS IN KOREA UNDER DIFFERENT MANAGEMENT REGIMES

  • Lee Chang-Seok;Cho Yong-Chan;Shin Hyun-Cheol;Moon Jeong-Suk;Lee Byung-Cheon;Bae Yang-Seop;Byun Hwa-Geun;Yi Hoon-Bok
    • Water Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.131-147
    • /
    • 2005
  • Today, a trend that tries to return the artificial space of a river to a natural one is expanding. But in Korea, which lies in the monsoon climate zone, rivers endure flood damage every year. Moreover, climatic change from global warming causes severe variations in precipitation patterns. Until recently, river restoration practices in Korea have followed partial restoration. These restorative treatments transformed artificial structures of the stream to natural ones and introduced natural vegetation by imitating natural or semi-natural streams. Treatment transformed the riparian structure and increased the diversity of micro-topography and vegetation. Furthermore, restoration recovered species composition, increased species diversity, and inhibited the establishment of exotic species. In particular, the Suip stream, which was left to its natural process for approximately 50 years, recovered its natural features almost completely through passive restoration. An urban stream, the Yangjae, and a rural stream, the Dongmoon, were restored partially by applying ecological principles. On the contrary, technological treatment applied to recover flood damage induced species composition far from the natural vegetation and decreased species diversity. Additionally, this treatment increased exotic species. The same results were found also in benthic invertebrate and fish fauna. The above-mentioned results reflect the importance of ecological considerations in river management.

  • PDF

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

  • Shin, Jae-Hoon;An, Nan-Hee;Lee, Sang-Min;Ok, Jung-Hun;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.712-719
    • /
    • 2016
  • Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.

A Study on the odor reduction of food waste leachate by some microorganisms (각종 미생물에 의한 음식물쓰레기 침출수의 악취저감 연구)

  • Kim, Dong-Won;Jeong, Hye-Won;Lee, Kyung-Seok;Park, Hyoung-Yong;Lee, Ki-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.2
    • /
    • pp.91-97
    • /
    • 2005
  • The purpose of this research is malodor reduction of food waste leachate by some microorganism. In oder to observe the efficiency of malodor reduction by different microorganisms, 300ml of food waste leachate was fermented by the addition of 10% precultured seed microorganism such as marine algae of Spirulina plantensis, Chlorella vulgaris, the yeast Saccharomyces cerevisae and bacteria Bacillus cereus for 10 days. During the fermentation the change in pH, salinity and sensory evaluations were tested. As the results, the pH values of samples in the beginning were 3.5~4.0. After fermentation they are increased to the level 4.9~7.4. The salinity values of the samples fermented by Spirulina plantensis and Chlorella vulgaris were lowered rapidly. By the sensory evaluation, the efficiency of malodor reduction by Chlorella vulgaris of the marine microalgae showed almost inodorous degree of ordor 1.

  • PDF

Visitors' Evaluation of Interpretive Media in Byeonsanbando National Park, Korea (변산반도국립공원 탐방객의 환경 해설 매체 이용평가)

  • Cho, Woo;Choi, Song-Hyun;Yoo, Ki-Joon
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • The purpose of this study were to provide basic visitor information for effective park management and to understand visitors' perception about the interpretive media which is utilized as environmental interpretation in Byeonsanbando National Park, Korea. To accomplish the purposes of study, a questionnaire survey was chosen and the 291 valid samples among them were analyzed. Among who used the interpretive media, the largest proportion used the visitor center exhibits, and the usage rate of interpretive label of woody plant and guided interpretation were shown to be relatively high. However, the park brochures(map) was evaluated that use efficiency was low. In the analysis of importance-performance for the environmental interpretation media, the mean of importance was 3.64 and that of performance was 3.03, which were lower than Chiaksan and Weolchusan National Park's survey data.

Antioxidant, antinociceptive activity and general toxicity study of Dendrophthoe falcata and isolation of quercitrin as the major component

  • Hasan, Md Shihab;Ahmed, Md Iqbal;Mondal, Sukla;Masud, Mohammad Methedi;Sadhu, Samir Kumar;Ishibashi, Masami;Uddin, Shaikh Jamal
    • Advances in Traditional Medicine
    • /
    • v.6 no.4
    • /
    • pp.355-360
    • /
    • 2006
  • Plants have been used in traditional medicinal system for centuries. Bangladeshi medicinal plants have received considerable attention from the researchers for evaluation of their bioactivity. As a part of our ongoing research of screening the Bangladeshi medicinal plants, the ethanolic extract of Dendrophthoe falcata have been chosen for the present study. The ethanolic extract of the leaves of the plant have been assessed for their antioxidant, antinociceptive, and general toxicity. The extract showed potent antioxidant activity ($IC_{50}5.1{\mu}g/ml$) using DPPH radical scavenging assay, which is comparable to the standard ascorbic acid ($IC_{50}4.6{\mu}g/ml$). The extract significantly and dose dependently inhibited the acetic acid induced writhing in mice (71.2%, P < 0.001 and 28.0%, P < 0.05 for 500 and 250 mg/kg body weight, respectively). A general toxicity was assessed by a simple and low cost assay using brine shrimp lethality as an indicator. The extract showed low level of toxicity ($LC_{50}100{\mu}g/ml$). Using different chromatographic techniques, quercitrin (quercetin 3-O-${\alpha}$-rhamnoside) was separated as the major component from the extract. The structure was elucidated by detailed 1D and 2D NMR and mass spectral analysis.

Investigation of a best oxidation model and thermal margin analysis at high temperature under design extension conditions using SPACE

  • Lee, Dongkyu;No, Hee Cheon;Kim, Bokyung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.742-754
    • /
    • 2020
  • Zircaloy cladding oxidation is an important phenomenon for both design basis accident and severe accidents, because it results in cladding embrittlement and rapid fuel temperature escalation. For this reason during the last decade, many experts have been conducting experiments to identify the oxidation phenomena that occur under design basis accidents and to develop mathematical analysis models. However, since the study of design extension conditions (DEC) is relatively insufficient, it is essential to develop and validate a physical and mathematical model simulating the oxidation of the cladding material at high temperatures. In this study, the QUENCH-05 and -06 experiments were utilized to develop the best-fitted oxidation model and to validate the SPACE code modified with it under the design extension condition. It is found out that the cladding temperature and oxidation thickness predicted by the Cathcart-Pawel oxidation model at low temperature (T < 1853 K) and Urbanic-Heidrick at high temperature (T > 1853 K) were in excellent agreement with the data of the QUENCH experiments. For 'LOCA without SI' (Safety Injection) accidents, which should be considered in design extension conditions, it has been performed the evaluation of the operator action time to prevent core melting for the APR1400 plant using the modified SPACE. For the 'LBLOCA without SI' and 'SBLOCA without SI' accidents, it has been performed that sensitivity analysis for the operator action time in terms of the number of SIT (Safety Injection Tank), the recovery number of the SIP (Safety Injection Pump), and the break sizes for the SBLOCA. Also, with the extended acceptance criteria, it has been evaluated the available operator action time margin and the power margin. It is confirmed that the power can be enabled to uprate about 12% through best-estimate calculations.

Chemical Assessment of Heavy Metal Contamination in Soil

  • Yang, Jae-E.;Choi, Moon-Heon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.8-11
    • /
    • 1997
  • Current methods of evaluating soil contamination by heavy metals rely on analyzing samples for total contents of metals or quantities recovered in various chemical extracting solutions. Results from these approaches provide only an index for evaluation because these methodologies yield values not directly related to bioavailability of soil-borne metals. In addition, even though concentrations of metals may be less than those required to cause toxic effects to biota, they may cause substantial effects on soil chemical parameters that determine soil quality and sustainable productivity. The objective of this research was to characterize effects of Cu or Cd additions on soil solution chemistry of soil quality indices, such as pH, EC, nutrient cation distribution and quantity/intensity relations (buffer capacity). Metals were added at rates ranging from 0 to 400 mg/kg of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable (strongly adsorbed) fractions. Adsorption of the added metals released cations into soil solution causing increases of soluble cation contents and thus ionic strength of soil solution. At metal additions of 200~400 mg/kg, EC of soil solution increased to as much as 2~4 dS/m; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations (Ca+Mg) than monovalent cations (K+Na) were exchanged by Cu or Cd adsorption. The loss of exchangeable nutrient cations decreased long-term nutrient supplying capacity or each soil. At 100 mg/kg or metal loading, the buffering capacity was decreased by 60%. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu/kg addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

"Green Harmony" - The Horticultural Therapy Program for Holistic Health of College Students ("그린 하모니" - 대학생의 전인건강을 위한 원예치료 프로그램)

  • Choi, Min-Hee;Lee, In-Sook;Cho, Tae-Dong;Suh, Jeung-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1437-1444
    • /
    • 2010
  • This research was to find out the effectiveness of the horticultural therapy program based on the therapeutic factors and the most meaningful experiences of the clients. For this purpose "Green harmony" program focused on harmony through horticulture was implemented. It is based on the preposition that holistic health is promoted with harmonious relationships with oneself, other people, community and nature. The program has three-fold structure: In innermost it deals with the task of the late adolescent, i.e., self identity, secondly the experience of communication and solidarity in the group, and finally extension of interest to the community. For the therapeutic intervention, questions using the metaphor of the activity were given to the clients for the establishment of self-identity, while group activity and the donation of the works let the second and third purpose accomplished. Outdoor activity, 'Tire garden project', has provided the clients with chances of the contact with nature, cooperation with other group members, and a contest to provoke enthusiasm. Also recycling and greening of the community were possible by utilizing old tires for the containers and by donating the final works to the community. For the evaluation of the result, the effect of the program on the stress of the college students was tested, and the most meaningful experiences during the participation to the program were asked to identify the therapeutic factors acknowledged by clients. "Green harmony" program has brought positive effects on the stress of the clients in spite of relatively short period of five weeks. The clients has acknowledged plant/nature contact and interactions between group members for the most meaningful experiences. This research suggests "Green harmony" horticultural therapy program based on the therapeutic factors is highly applicable for the general populations.

Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns (강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.291-298
    • /
    • 2017
  • The objective of the present study is to evaluate the cyclic flexural behavior of a hybrid H-steel-reinforced concrete (HSRC) beam at the connection with a H-steel column. The test parameter investigated was the configuration of dowel bars at the joint region of the HSRC beam. The HSRC beam was designed to have plastic hinge at the end of the H-steel beam rather than the RC beam section near the joint. All specimens showed a considerable ductile behavior without a sudden drop of th applied load, resulting in the displacement ductility ratio exceeding 4.6, although an unexpected premature welding failure occurred at the flanges of H-steel beams connecting to H-steel column. The crack propagation in the RC beam region, flexural strength, and ductility of HSRC beam system were insignificantly affected by the configuration of dowel bars. The flexural strength of HSRC beam system governed by the yielding of H-steel beam could be conservatively evaluated from the assumption of a perfect plasticity state along the section.