• Title/Summary/Keyword: Plant Evaluation

Search Result 2,907, Processing Time 0.032 seconds

A Study on Fretting Fatigue of High Strength Aluminum Alloys (고강도 알루미늄 합금의 Fretting Fatigue에 관한 연구)

  • Lee, Hak-Sun;Kim, Sang-Tae;Choi, Sung-Jong;Yang, Hyun-Tae;Kim, Jae-Kyoung;Lee, Dong-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.168-173
    • /
    • 2004
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decrease in 50-70% of the plain fatigue strength. This may be observed in aircraft, automobile and nuclear power plant used in special environment and various loading conditions. In the present study, the characteristics of the fretting fatigue are investigated using the two aluminum alloy(Al2024-T3511 and Al7050-T7451). Through the experiment, it is found that the fretting fatigue strength of the Al7050-T7451 alloy decreased about 50% from the plain fatigue strength, while the fretting fatigue strength of the Al2024-T3511 alloy decreased about 45%. The tire track was widely observed in fracture surface area of oblique crack which was induced by contact pressure. These results can be the basic data to the structural integrity evaluation of aluminum alloy subjected to fretting damage.

  • PDF

A Study on the Performance Evaluation of a Hybrid Desiccant Cooling System (하이브리드 제습냉방시스템의 성능평가 연구)

  • Hwang, Won-Baek;Kim, Young-Chan;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.121-128
    • /
    • 2012
  • Improvement in the energy efficiency has been studied of the desiccant cooling system by applying a vapor compression type heat pump to modify the system into a hybrid system. The cycle simulation was performed and the results were compared between a reference desiccant cooling system composed of a desiccant rotor, a sensible rotor and a regenerative evaporative cooler, and a hybrid desiccant cooling system with the sensible rotor being replaced by a heat pump. Though the electric consumption increases as much as the compressor power consumption, the total cooling capacity increases and the thermal energy input decreases by the addition of the heat pump. Therefore, the total energy efficiency can be improved if the increase in the electric consumption can be compensated with the increase in the cooling capacity and the decrease in the thermal energy input. The results showed that the total energy efficiency is optimized at a certain heat pump capacity. When the heat from the CHP plant is used for the thermal energy input, the energy consumption of the hybrid system is reduced by 20~30% compared with the reference system when the heat pump shares 30~40% of the total cooling capacity.

Design of In-situ Self-diagnosable Smart Controller for Integrated Algae Monitoring System

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Shin, Jaekwon;Yang, Seungyoun
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2017
  • The rapid growth of algae occurs can induce the algae bloom when nutrients are supplied from anthropogenic sources such as fertilizer, animal waste or sewage in runoff the water currents or upwelling naturally. The algae blooms creates the human health problem in the environment as well as in the water resource managers including hypoxic dead zones and harmful toxins and pose challenges to water treatment systems. The algal blooms in the source water in water treatment systems affects the drinking water taste & odor while clogging or damaging filtration systems and putting a strain on the systems designed to remove algal toxins from the source water. This paper propose the emerging In-Situ self-diagnosable smart algae sensing device with wireless connectivity for smart remote monitoring and control. In this research, we developed the In-Site Algae diagnosable sensing device with wireless sensor network (WSN) connectivity with Optical Biological Sensor and environmental sensor to monitor the water treatment systems. The proposed system emulated in real-time on the water treatment plant and functional evaluation parameters are presented as part of the conceptual proof to the proposed research.

Effects of Melting Condition and Alloying Elements on Localized Corrosion Resistance of High Cr and N Bearing Stainless Steels

  • Yoo, Y.R.;Jang, S.G.;Cho, H.H.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.181-188
    • /
    • 2006
  • In this study, the characteristics of the experimentally produced high N-high Cr bearing stainless steels are discussed as a part of applications of materials for FGD (Fuel Gas Desulfurization) system of thermal power plants or for power plants using seawater as coolant. Corrosion resistance of developed alloys is especially investigated in detail. Corrosion characteristics of vacuum melted cast are shown to be superior to that of air melted one. From the viewpoint of CPT, It is estimated that the differences of corrosion resistance are $21.8^{\circ}C{\sim}24.6^{\circ}C$ at PRE 40 and $8^{\circ}C{\sim}12.4^{\circ}C$ at PRE 50, and the gaps becomes bigger as the PRE values are lower. In the evaluation of corrosion resistance in alloy A2501, Z3101, and A3301 according to Cr concentration, alloy A3301 shows a deviation from the general tendency in chloride solutions. It has relatively high PRE value as 48.6, but it has relatively poor pitting resistance. It is, however, difficult to observe a specific phase except ferrite in microstructure analysis and neither detects special phase such as sigma phase.

Evaluation on Safety of Stainless Steels in Chemical Decontamination Process with Immersion Type of Reactor Coolant Pump for Nuclear Reactor (침적식 화학적 제염 공정 시 원자로 냉각재 펌프용 스테인리스강의 안전성 평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Ki-Joon;Jang, Seok-Ki
    • Corrosion Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.167-174
    • /
    • 2011
  • Due to commercialization of nuclear power, most countries have taken interest in decontamination process of nuclear power plant and tried to develop a optimum process. Because open literature of the decontamination process are rare, it is hard to obtain skills on decontamination of foreign country and it is necessarily to develop proper chemical decontamination process system in Korea. In this study, applicable possibility in chemical decontamination for reactor coolant pump (RCP) was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process with immersion type than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion also increased with increasing cycle numbers.

Long-Term Performance of Safety Related Concrete Structures in Nuclear Power Plants (원전 콘크리트 구조물의 장기내구성능 평가)

  • Yoon, Eui-Sik;Paek, Yong-Lak;Lim, Jae-Ho;Chung, Yun-Suk;Choi, Kang-Ryong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.237-240
    • /
    • 2006
  • Almost 30 years have been passed since the first nuclear power plant was operated in Korea. Many studies have been actively conducted from the early 1990's in order to develop the deterioration management system for concrete structures in NPPs(Nuclear Power Plants) accordingly. Base on these studies, a systematic deterioration management program has developed and operated since 1997. According to this program, systematic inspections to provide database and evaluation were periodically performed (every overhaul at intervals of $12{\sim}18$ month and every five years). Accumulated deterioration database was usefully utilized for the NPP PSR (Periodic Safety Review). In this paper, the long-term durability and integrity of Kori 1,2 NPP concrete structures which are the oldest ones in Korea were evaluated based on the precise inspection database and regulatory inspection results including compressive strength, depth of carbonation, amount of chlorination and spontaneous potential of reinforcing bar, etc. It was noted that Kori 1,2 NPP structures have not any serious durability problems.

  • PDF

Evaluation of the Heavy Metal Tolerance of Saxifraga stolonifera, Shade Groundcover Plant, to Different Concentrations of Cd, Pb and Zn in Soil (토양 내 카드늄, 납, 아연 농도에 따른 내음성 바위취(Saxifraga stolonifera)의 중금속 내성 평가)

  • Ju, Jin-Hee;Yoon, Young-Han
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.585-590
    • /
    • 2010
  • This study attempted to facilitate various groundcover plants, related to phytoremediation material, and advance shade plants with a heavy metal tolerance to contaminated soil in an urban shade space. Saxifraga stolonifera, which has commonly been used a landscape shade plants, was evaluated to determine its heavy metal tolerance to different concentrations(Control, $100mg{\cdot}kg^{-1}$, $250mg{\cdot}kg^{-1}$ and $500mg{\cdot}kg^{-1}$ treatment) of Cd, Pb and Zn in soil. The growth of Saxifraga stolonifera showed no significant tendency after the initial transplantation, but showed distinct changes with the respective treatment heavy metal types and concentrations over time. Especially, severe chlorosis, with more yellowish green leaves, was observed, with inhibition at Cd concentrations greater than $100mg{\cdot}kg^{-1}$. Conversely, no external symptoms or growth retardation were observed with Pb and Zn concentrations less than $500mg{\cdot}kg^{-1}$. Therefore, Saxifraga stolonifera can be applied as a long term phytoremediation species in soil contaminated with low concentrations of heavy metal in urban shade spaces.

Review on Evaluation of Rare Earth Metals and Rare Valuable Metals Contained in Coal Ash of Coal-fired Power Plants in Korea

  • Park, Seok-Un;Kim, Jae-Kwan;Seo, Yeon-Seok;Hong, Jun-Seok;Lee, Hyoung-Beom;Lee, Hyun-Dong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.121-125
    • /
    • 2015
  • Distribution of rare earth metals (REMs) and rare valuable metals (RVMs) contents in coal ashes (fly ash, bottom ash, and pond ash) and leachate from 11 coal-fired power plants in Korea were investigated. Coal ashes and leachates were found to contain important REMs and RVMs such as Yttrium (Y) and Neodymium (Nd), which was in the range of 23~75 mg/kg. However, it still requires developing effective recovery and separation methods in order to utilize REMs and RVMs in ash and leachate. Recovery of valuable elements (Y and Nd) from various and extensive ash sources (8.21 million tons/year in 2013) can provide the existing power plants with additional profit; therefore, it can significantly improve economics of the power plants.

Evaluation of Corrosion Resistance of Materials for Supercritical Carbon Dioxide Power Plant (초임계 이산화탄소 발전용 소재의 고온 내식성 평가)

  • Chae, Hobyung;Seo, Sukho;Jung, Yong Chan;Lee, Soo Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.109-113
    • /
    • 2015
  • 초임계 이산화탄소 발전 시스템 구축을 위해서는 고온, 고압의 열악한 환경에 노출되는 터빈, 열 교환기, 압축기와 같은 핵심 부품들의 내식성 평가는 반드시 수행되어야 한다. 이를 위해 후보소재 3종 Ferritic-Martensitic Steel (T92), Austenitic Steel (SS316L), Ni-based Alloy (IN738LC)를 선정하여 고온의 유사 초임계 $CO_2$ 발전 환경에서의 내식성 평가를 진행하였다. $600^{\circ}C$, $700^{\circ}C$의 2개의 온도 구간에서 $CO_2$ 분위기를 조성하여 800 시간 동안 노출시킨 뒤, Weight Change, Surface Morphology, Cross Section, Composition을 분석하였다. Cr-rich Protective Layer를 형성하는 Ni-based Alloy와 Fe/Cr-rich oxide를 형성하는 Austenitic Steel은 우수한 부식 저항성을 보인 반면에 Ferritic-Martensitic Steel은 높은 Weight Change와 Fe-rich Non-Protective Oxide가 관찰되어 상대적으로 낮은 부식 저항성을 보였다.

A Study on the Properties of the Heavy Duty Rust-Converting Agent used in the Potential Hazard Areas of Fire & Explosion (잠재적 화재.폭발 위험 지역 작업용 녹전환형 중방식 코팅제의 특성에 관한 연구)

  • 강영구
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.102-111
    • /
    • 1998
  • This study was concerned with the development of a heavy duty rust-converting agent, the function of which is to form metal complex coatings, containing vinyl halide-acrylic terpolymer emulsion, defoamer, emulsifying agent, glass flakes, chelating agent such as gallotannic acid, gallic acid, and pyrogallic acid, and other additives. The resulted emulsion products(Sample No.1~No.5) were characterized through test either in the forms of emulsions, which include Viscosity, Penetration rate, Acidity and Film drying rate test, or in the forms of coated layer on rusty steel substrates by FT-IR, which include hardness, gloss, salt spray, adhesion and flame retardant test. The test results are as follows ; Penetration rate(0.1~0.4 mm/min), Solid content(70%), Acidity (pH 1.8~2.0), Specific gravity(1.30~1.35), Film drying rate(108min, RH 40% ; 150min, RH 80%), Gloss(83~92, incident angle $60^{\circ}$; 88~97, incident angle $85^{\circ}$), Pencil hardness(4H~5H), Adhesion (100/100), Salt spray test(>720Hr), LOI(%) value(38%), Vertical burning test(UL 94-v-l). According to the various performance of specimens show above, the evaluation of the availability of this heavy duty rust-converting agent can be concluded that all the samples(No.1~No.5) are capable of being used in the field of chemical plant and in the hazard areas of fire and explosion potential. It was observed that the properties of sample No.2, especially gloss and hardness, were much better than that of the other samples.

  • PDF