• Title/Summary/Keyword: Plant Evaluation

Search Result 2,888, Processing Time 0.033 seconds

THE APPLICATION OF PSA TECHNIQUES TO THE VITAL AREA IDENTIFICATION OF NUCLEAR POWER PLANTS

  • HA JAEJOO;JUNG WOO SIK;PARK CHANG-KUE
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.259-264
    • /
    • 2005
  • This paper presents a vital area identification (VAI) method based on the current fault tree analysis (FTA) and probabilistic safety assessment (PSA) techniques for the physical protection of nuclear power plants. A structured framework of a top event prevention set analysis (TEPA) application to the VAI of nuclear power plants is also delineated. One of the important processes for physical protection in a nuclear power plant is VAI that is a process for identifying areas containing nuclear materials, structures, systems or components (SSCs) to be protected from sabotage, which could directly or indirectly lead to core damage and unacceptable radiological consequences. A software VIP (Vital area Identification Package based on the PSA method) is being developed by KAERI for the VAI of nuclear power plants. Furthermore, the KAERI fault tree solver FTREX (Fault Tree Reliability Evaluation eXpert) is specialized for the VIP to generate the candidates of the vital areas. FTREX can generate numerous MCSs for a huge fault tree with the lowest truncation limit and all possible prevention sets.

Evaluation of Creep-Fatigue Damage of KALIMER Reactor Internals Using the Elastic Analysis Method in RCC-MR

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.566-584
    • /
    • 2001
  • In this paper, the progressive deformation and the creep-fatigue damage for the conceptually designed reactor internals of KALIMER(Korea Advanced Liquid MEtal Reactor) are carried out by using the elastic analysis method in the RCC-MR code for normal operating conditions including the thermal load, seismic load (OBE) and dead weight. The maximum operating temperature of this reactor is 53$0^{\circ}C$ and the total service lifetime is 30 years. Thus, the time- dependent creep and stress-rupture effects become quite important in the structural design. The effects of the thermal induced membrane stress on the creep-fatigue damage are investigated with the risk of the elastic follow-up. To calculate the thermal stress, detailed thermal analyses considering conduction, convection and radiation heat transfer mechanisms are carried out with the ANSYS program. Using the results of the elastic analysis, the progressive deformation and creep-fatigue damages are calculated step by step using the RCC-MR in detail. This paper ill be a very useful guide for an actual application of the high temperature structural design of the nuclear power plant accounting for the time-dependent creep and stress-rupture effects.

  • PDF

Thermal Cycling Screening Criteria to RCS Branch Lines in Domestic Nuclear Power Plant (국내 원전 RCS 분기배관에 대한 열피로 선정기준)

  • Park, Jeong Soon;Choi, Young Hwan;Lim, Kuk Hee;Kim, Sun Hye
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.54-60
    • /
    • 2010
  • Piping failures due to thermal fatigue have been widely reported in normally stagnant non-isolable reactor coolant branch lines. Since the thermal fatigue due to thermal stratification was not considered in the piping fatigue design in old NPPs, it is important to evaluate the effect of thermal stratification on the integrity of branch lines. In this study, geometrical screening criteria for Up-horizontal branch lines in MRP-132 were applied to SI(Safety Injection) lines of KSNP 2-loop and WH 3-loop. Some computational fluid dynamic(CFD) analyses on the Reactor Coolant System(RCS) branch lines were also performed to develop the regulatory guidelines for screening criteria. As a result of applying MRP-132 screening criteria, KSNP 2-loop and WH 3-loop SI lines are determined to need further detailed evaluation. Results of CFD analyses show that both valve isolation and amount of leakage through valve can be used as technical bases for the screening criteria on the thermal fatigue analysis.

  • PDF

The Swiss Radioactive Waste Management Program - Brief History, Status, and Outlook

  • Vomvoris, S.;Claudel, A.;Blechschmidt, I.;Muller, H.R.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.9-27
    • /
    • 2013
  • Nagra was established in 1972 by the Swiss nuclear power plant operators and the Federal Government to implement permanent and safe disposal of all types of radioactive waste generated in Switzerland. The Swiss Nuclear Energy Act specifies that these shall be disposed of in deep geological repositories. A number of different geological formations and sites have been investigated to date and an extended database of geological characteristics as well as data and state-of-the-art methodologies required for the evaluation of the long-term safety of repository systems have been developed. The research, development, and demonstration activities are further supported by the two underground research facilities operating in Switzerland, the Grimsel Test Site and the Mont Terri Project, along with very active collaboration of Nagra with national and international partners. A new site selection process was approved by the Federal Government in 2008 and is ongoing. This process is driven by the long-term safety and feasibility of the geological repositories and is based on a step-wise decision-making approach with a strong participatory component from the affected communities and regions. In this paper a brief history and the current status of the Swiss radioactive waste management program are presented and special characteristics that may be useful beyond the Swiss program are highlighted and discussed.

Evaluation of the Antioxidant Properties of Pediastrum duplex and Dactylococcopsis fascicularis Microalgae

  • Lee, Seung-Hong;Lee, Won-Woo;Lee, Joon-Baek;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.1
    • /
    • pp.18-25
    • /
    • 2010
  • Interest in plant-derived food additives has increased recently, with efforts to identify natural antioxidant sources to replace synthetic antioxidants. This study evaluated the antioxidant effects of organic solvent fractions of 80% methanol extracts from Pediastrum duplex and Dactylococcopsis fascicularis microalgae. Among the solvent fractions tested, the ethyl acetate and n-hexane fractions from P duplex effectively scavenged 79.8% and 74.5% of DPPH free radicals, respectively. The chloroform fraction from D. fascicularis showed the strongest $H_2O_2$ scavenging ability (49.7%). The greatest scavenging of hydroxyl radicals (73.1%) was exhibited by the 80% methanol extract from P duplex. Aqueous residue and ethyl acetate fraction from P duplex provided the strongest nitric oxide scavenging (57.7%) and metal chelating effect (82.1%), respectively. Chloroform and ethyl acetate fractions from P duplex and n-hexane fraction from D. fascicularis exhibited significantly greater inhibition of lipid peroxidation than the commercial antioxidants. These results suggested that P duplex and D. fascicularis microalgae having potential anti oxidative compounds with various properties could be utilized in the food and pharmaceutical industries.

Evaluation of Characteristics of Simulated Radioactive Vitrified Form Using Cooling Methods (냉각 방법에 따른 모의 방사성폐기물 유리고화체의 특성평가)

  • Lee, Kang-Taek;Lee, Kyu-Ho;Yoon, Duk-Ki;Ryu, Bong-Ki;Kim, Cheon-Woo;Park, Jong-Kil;Hwang, Tae-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.865-871
    • /
    • 2006
  • In order to examine and compare the characteristics of two vitrified forms (AG8W1 and DG2) simulated for the operation of a commercial vitrification facility being constructed in Ulchin nuclear power plant, the vitrified forms were cooled by the natural cooling and annealing methods respectively. And the Product Consistency Test (PCT), compressive strength, thermal conductivity, specific heat, phase stability, softening point and Coefficient of Thermal Expansion (CTE) of the vitrified farms were experimented. Consequently, it was shown that there were no significant differences on the physiochemical properties of the vitrified forms performed the natural cooling and annealing.

Effect of Stress Concentration Factors on the Fatigue Evaluation of the Direct Vessel Injection Nozzle (원자로 직접주입노즐의 피로평가에 미치는 응력집중계수의 영향)

  • Kim, Tae-Soon;Lee, Jae-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.53-59
    • /
    • 2010
  • A fatigue damage caused by cyclic load is considered as one of the important failure mechanisms that threaten the integrity of structures and components in a nuclear power plant. In ASME code section III NB, the fatigue analysis procedure and standard S-N curves for the class 1 components are described and these criteria should be met at the design step of components. As the current ASME S-N curves are based on the very conservative assumptions such as a local stress concentration effect, immoderate transient frequencies and a constant Young's modulus, however, they can not precisely address the fatigue behavior of components. In order to find out the technical solution for these problems, a number of researches and discussion have been carried out continuously at home and abroad over the decades. In this study, detailed fatigue analyses for DVI nozzle with various mesh density of finite elements were performed to evaluate effect of stress concentration factors on the fatigue analysis procedure and the excessive conservatism of stress concentration factors are confirmed through the analysis results.

Assessment of the Distribution of the Street Trees of Suwon City for Biodiversity

  • Choi, Sun A;Kim, Shin Won
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.49-57
    • /
    • 2014
  • This research is about analysis and evaluation of biodiversity of Suwon's street tree, then understanding the problem of it and finally finding a solution. Because the increasing damage of the street trees by disease and insects, insecticide is applied to prevent further damage. However, this insecticide is found to be cancer genic and causing hygienic threat to civilians. Therefore, by gathering Suwon's internal statistics about Suwon's street tree, the trees are divided into three categories, tall evergreen trees, deciduous trees, shrubs following Frank's 30-20-10 theory(1990). Also, according to species diversity index, the problem of disease and insect is researched in terms of biodiversity, and here we suggests solutions to counter such problems. According to the results, the trees planted in Suwon was found to be 31 families, 43 genus and 58 species. The most used kinds, almost 85% of the whole species, are found to be Rhododendron indicum (L.) Sweet, Buxus koreana Nakai ex Chung & al, Euonymus japonicus Thunb, Ligustrum obtusifolium Siebold & Zucc. Besides these, the rest of 15% of street trees had little variety. Therefore, it is necessary to plant tree variously and equally in terms of biodiversity. If this Frank's 10-20-30 solution is not enough to completely solve coulure problem, then further research will be done on soil properties, and local features for improvement of Suwon street tress.

A Study on Fretting Fatigue of High Strength Aluminum Alloys (고강도 알루미늄 합금의 Fretting Fatigue에 관한 연구)

  • Lee, Hak-Sun;Kim, Sang-Tae;Choi, Sung-Jong;Yang, Hyun-Tae;Kim, Jae-Kyoung;Lee, Dong-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.168-173
    • /
    • 2004
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decrease in 50-70% of the plain fatigue strength. This may be observed in aircraft, automobile and nuclear power plant used in special environment and various loading conditions. In the present study, the characteristics of the fretting fatigue are investigated using the two aluminum alloy(Al2024-T3511 and Al7050-T7451). Through the experiment, it is found that the fretting fatigue strength of the Al7050-T7451 alloy decreased about 50% from the plain fatigue strength, while the fretting fatigue strength of the Al2024-T3511 alloy decreased about 45%. The tire track was widely observed in fracture surface area of oblique crack which was induced by contact pressure. These results can be the basic data to the structural integrity evaluation of aluminum alloy subjected to fretting damage.

  • PDF

A Study on the Performance Evaluation of a Hybrid Desiccant Cooling System (하이브리드 제습냉방시스템의 성능평가 연구)

  • Hwang, Won-Baek;Kim, Young-Chan;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.121-128
    • /
    • 2012
  • Improvement in the energy efficiency has been studied of the desiccant cooling system by applying a vapor compression type heat pump to modify the system into a hybrid system. The cycle simulation was performed and the results were compared between a reference desiccant cooling system composed of a desiccant rotor, a sensible rotor and a regenerative evaporative cooler, and a hybrid desiccant cooling system with the sensible rotor being replaced by a heat pump. Though the electric consumption increases as much as the compressor power consumption, the total cooling capacity increases and the thermal energy input decreases by the addition of the heat pump. Therefore, the total energy efficiency can be improved if the increase in the electric consumption can be compensated with the increase in the cooling capacity and the decrease in the thermal energy input. The results showed that the total energy efficiency is optimized at a certain heat pump capacity. When the heat from the CHP plant is used for the thermal energy input, the energy consumption of the hybrid system is reduced by 20~30% compared with the reference system when the heat pump shares 30~40% of the total cooling capacity.