• Title/Summary/Keyword: Plant Evaluation

Search Result 2,868, Processing Time 0.027 seconds

Development of New Antitumor Drugs from Natural Sources , with Guida (항종양활성 Screening을 지표로 한 천연물의약품의 개발연구와 그 생약소재의 품질평가에 대하여(抗腫瘍活性スクリ-ニングを指標とした天然物醫藥品の開發硏究とその生約素材の品質評價について))

  • Takeya, Koichi
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 1993.08a
    • /
    • pp.14-20
    • /
    • 1993
  • We in anticancer drug development from natural resources have conceived and used a wide variety of experimental screening systems to support our efforts during the past 20 tears. Screens have been devided to address targets at the molecular, biochemical and cellular levels, both in vivo and in vitro. Screens have been essential for the experimental evaluation of the products from natural sources. In this congress, antitumor screening methods for deveol[ment of new drugs from natural sources and evaluation of their crude drugs are discussed.

  • PDF

A Study on Static and Dynamic Design Criteria of Piping System in Petrochemical Plant Design (석유화학 플랜트 설계 시 배관계의 정적, 동적 설계기준에 대한 연구)

  • 민선규;최명진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.275-279
    • /
    • 2001
  • There are two kinds of the design criteria of piping system in petrochemical plant design. The first is on static state evaluation by thermal growth and the other is on dynamic evaluation by piping vibration. In the static design evaluation, the ASME B31.3 code defines 7000 cycles of fatigue life in operating the piping system with design condition. However, the dynamic design evaluation in comparative with small displacements of high frequencies to static condition has not established clearly the method, yet. So, this study purposes to present the trial of a proposal of dynamic design criterion on the basis of static design method.

  • PDF

A Study of the Evaluation for the Control Room in Human Machine System Under Hybrid Environment (하이브리드 환경하의 인간기계시스템 제어실 평가에 관한 연구)

  • Cha, Woo-Chang;Kim, Nam-Cheol
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • While the operator's working environment employs the digital devices and technology which are not be fully digitalized due to its technical constraints, it has been changed to the hybrid environment in which digital and analog elements are combined. The hybrid environments need to study its characteristics and the guidelines for the proper design and evaluation purpose. This paper describes the characteristics and evaluation guidelines for hybrid environment through studying the characteristics of digital and analog environment based on the related human factor guidelines and literatures. The result of this paper would be applied for the human machine system such as main control room in nuclear power plant working under hybrid environment. And also, it may be applied for the evaluation of the generic human working environment which digital and analog elements are jointly used.

Economical Assessment of Wastewater Treatment Facilities in Leather Tanning and Finishing Industry (가죽, 모피 가공 및 제조업 폐수처리시설의 경제성 평가)

  • Kim, Jaehoon;Yang, Hyung jae;Kwon, Oh sang;Lee, Sung jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.131-137
    • /
    • 2007
  • Industrial wastewater management guideline and evaluation model of Best Available Technologies for the leather tanning and finishing industry was developed as an economical evaluation model using evaluation of BAT including economical evaluation combined with cost analysis model and cost annualization model in considering of economical factors and non-water environmental factors. It was verified that approximately 10% will be increased annually to modify conventional treatment process ($3,700m^3/d$) of J leather wastewater treatment plant to advanced process of K leather wastewater treatment plant.

A study on the development direction for vendor management in plant construction (플랜트 건설공사의 벤더관리 발전방향 기초연구)

  • Park, Hwan-Pyo;Han, Jae-Goo;Chin, Kyung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.189-190
    • /
    • 2011
  • The purpose of this study is to suggest the development direction for vendor management in plant construction. Therefore this research has proposed the integration management of vendor and information standardization. This research has proposed that plant industry association manage the basic information of vendor. And each company manage the performance evaluation of vendor's firm. Expecially, vendor management system should be developed by ISO information system.

  • PDF

Disease Occurrence in Transgenic Rice Plant Transformed with Silbene Synthase Gene and Evaluation of Possible Horizontal Gene Transfer to Plant Pathogens

  • Yu, Sang-Mi;Jeong, Ui-Seon;Lee, Ha Kyung;Baek, So Hyeon;Kwon, Soon Jong;Lee, Yong Hoon
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.189-195
    • /
    • 2014
  • Genetic engineering is being used to enhance disease resistance and nutritional value of crops including rice plant. Considering the fast-growing agricultural biotechnology and rapidly increasing global area of transgenic crops, the risk evaluation on environment is necessary. In this study, we surveyed the difference of disease occurrence between transgenic rice variety, Iksan526 transformed with peanut stilbene synthase gene and non-transgenic rice varieties, Dongjin and Nampyeong in the field. Moreover, the possibility of gene transfer from transgenic rice to bacterial and fungal pathogens was investigated. The results of this study indicated that there was no significant difference in the occurrence and severity of the diseases between Iksan526 and Dongjin or Nampyeong. In addition, the results suggested that rice pathogen, such as Xanthomonas oryzae pv. oryzae, Rhizoctonia solani and Magnaporthe grisea did not take up stilbene synthase and bar genes under natural conditions. Moreover the transformed DNA was not transferred to the pathogens even in repetitive contacts.

A Study of the Sectionalizing for Pipe Deterioration Evaluation in Industrial Facilities (산업시설 배관 노후도 평가를 위한 배관 섹션화 방안 연구)

  • Min, Hyuk-Ki;Kim, Sang-Bum;Kim, Byung-Woo;Kim, Hyoung-Ki;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.103-111
    • /
    • 2015
  • In general, no particularly well-established standards have been in place so far, for the method of evaluating the deteriorated level of pipes and ducts of industrial facilities. For that reason, the evaluation depends upon various studies which are based on the analysis of the residual life, thickness thinning, closure rate, and scale thickness that measure a few specific positions of pipes. It also depends upon the expertise in business operation and the specific techniques conducted by the inspection companies and institutions. This research introduces the concept of measuring units per section and the selection method of measurement points per section. Furthermore, specific methodologies were developed to plan and analyze deterioration level of industrial pipes and ducts by engineers and managers using a section map. Consequently, applying the outcomes from this study to the plant equipment of the incineration facility resulted in saving 42% of the repairing and remodeling cost.

The Study on the Improvement of Environmental Assessment Method through Analysis of Environmental Investigation Results of Taean Thermal Power Plant (환경영향평가와 사후환경조사의 비교에 관한 연구 - 태안화력발전소 사례분석 -)

  • Chun, Sang-Ki;Lee, Sung-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.61-74
    • /
    • 2000
  • This study compares the results of environmental impact assessment with the results of post-environmental investigation, using the case of Taean thermal power plant construction. The atmospheric and water qualities were not greatly changed before and after the construction of the power plant. However, the site of the highest concentration predicted by the atmospheric quality modeling in environmental impact assessment was different from that after operation of 4 power plants. There was also a difference in the diffusion range of thermal discharge water between the measured result(1km) and the predicted value(1.5km) with the model. Thus, environmental impact evaluation should be based on long-term (more than a year) environmental monitoring data. For the modeling of atmospheric quality and numerical thermal discharge water diffusion, appropriate models for each plant should be selected and the numerical modeling should be accompanied by computer simulation, wind tunnel test, etc. Moreover, environmental evaluation should focus more on the degree of impact on surroundings than the prediction of changes in surroundings caused by operation of plants.

  • PDF

Development and validation of an analytical method for the quantification of 2,6-diisopropylnaphthalene in agricultural products using GC-MS/MS

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Chung, Yun mi;Choi, Ha na;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • An analytical method was developed and optimized for the quantification of a plant growth regulator, 2,6-diisopropylnaphthalene (2,6-DIPN), in agricultural products using gas chromatography-tandem mass spectrometry. The samples were extracted, partitioned, and were purified using a Florisil® cartridge. To validate the analytical method, its specificity, linearity, limit of detection (LOD) and limit of quantification (LOQ) of the instrument, LOQ of the analytical method (MLOQ), accuracy, and repeatability were considered. The method displayed excellent results during validation, and is suitable for the determination and quantification of the low residual levels of the analyte in the agricultural samples. All of the results with the optimized method were satisfactory and within the criteria ranges requested in the Codex Alimentarius Commission guidelines and the Ministry of Food and Drug Safety guidelines for pesticide residue analysis. The developed method is simple and accurate and can be used as a basis for safety management of 2,6-DIPN.

Optical Sensing for Evaluating the Severity of Disease Caused by Cladosporium sp. in Barley under Warmer Conditions

  • Oh, Dohyeok;Ryu, Jae-Hyun;Oh, Sehee;Jeong, Hoejeong;Park, Jisung;Jeong, Rae-Dong;Kim, Wonsik;Cho, Jaeil
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.236-240
    • /
    • 2018
  • Crop yield is critically related to the physiological responses and disease resistance of the crop, which could be strongly affected by high temperature conditions. We observed the changes in the growth of barley under higher than ambient air-temperature conditions using a temperature gradient field chamber (TGFC) during winter and spring. Before the stem extension stage of barley growth, Cladosporium sp. spontaneously appeared in the TGFC. The severity of disease became serious under warmer temperature conditions. Further, the stomata closed as the severity of the disease increased; however, stomatal conductance at the initial stage of disease was higher than that of the normal leaves. This was likely due to the Iwanov effect, which explains that stressed plants rapidly and transiently open their stomata before longer-term closure. In this study, we tested three optical methods: soil-plant analysis development (SPAD) chlorophyll index, photochemical reflectance index (PRI), and maximum quantum yield (Fv/Fm). These rapid evaluation methods have not been used in studies focusing on disease stress, although some studies have used these methods to monitor other stresses. These three indicative parameters revealed that diseased barley exhibited lower values of these parameters than normal, and with the increase in disease severity, these values declined further. Our results will be useful in efficient monitoring and evaluation of crop diseases under future warming conditions.