• Title/Summary/Keyword: Plant Diversity Conservation

Search Result 273, Processing Time 0.028 seconds

Do Physiognomically Designated Protected Areas Match Well with Ecological Data based upon Diversity Indices and Ordination? Implications for Urban Forest Conservation

  • Kee Dae Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.329-341
    • /
    • 2023
  • We surveyed the vegetation of an ecological landscape preservation area (legally protected conservation areas or national parks) and the surrounding areas of Mt. Cheonggye, Republic of Korea, to explore the conservation implications for preservation areas and surrounding transition areas. We calculated diversity indices to identify the properties of the preservation and surrounding areas that are relevant to conservation efforts. We then compared the plant community composition between the areas using field and quadrat surveys in the preservation and surrounding areas. The cover of the dominant species in all tree and herb layers was markedly higher in the preservation area than in the peripheral zones. The species richness indices were significantly higher in the preservation area than in the peripheral zones. Ordination using detrended canonical correspondence analyses showed that the cover of the dominant tree species and rocks could explain the distribution of plant species in the Cartesian space of the ordination. Our results demonstrate that physiognomically designated protected areas match well with ecological data based on diversity indices and ordination analyses and that disturbances in the areas surrounding the ecological landscape of preservation areas can have considerable impacts on plant diversity indices. Hence, the preservation and management of surrounding areas are essential conservation elements for protecting the entire ecological landscape of preservation areas.

Cryptic variation, molecular data, and the challenge of conserving plant diversity in oceanic archipelagos: the critical role of plant systematics

  • Crawford, Daniel J.;Stuessy, Tod F.
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.2
    • /
    • pp.129-148
    • /
    • 2016
  • Plant species on oceanic islands comprise nearly 25% of described vascular plants on only 5% of the Earth's land surface yet are among the most rare and endangered plants. Conservation of plant biodiversity on islands poses particular challenges because many species occur in a few and/or small populations, and their habitats on islands are often disturbed by the activity of humans or by natural processes such as landslides and volcanoes. In addition to described species, evidence is accumulating that there are likely significant numbers of "cryptic" species in oceanic archipelagos. Plant systematists, in collaboration with others in the botanical disciplines, are critical to the discovery of the subtle diversity in oceanic island floras. Molecular data will play an ever increasing role in revealing variation in island lineages. However, the input from plant systematists and other organismal biologists will continue to be important in calling attention to morphological and ecological variation in natural populations and in the discovery of "new" populations that can inform sampling for molecular analyses. Conversely, organismal biologists can provide basic information necessary for understanding the biology of the molecular variants, including diagnostic morphological characters, reproductive biology, habitat, etc. Such basic information is important when describing new species and arguing for their protection. Hybridization presents one of the most challenging problems in the conservation of insular plant diversity, with the process having the potential to decrease diversity in several ways including the merging of species into hybrid swarms or conversely hybridization may generate stable novel recombinants that merit recognition as new species. These processes are often operative in recent radiations in which intrinsic barriers to gene flow have not evolved. The knowledge and continued monitoring of plant populations in the dynamic landscapes on oceanic islands are critical to the preservation of their plant diversity.

Genetic diversity and geographic differentiation in the endangered Primula farinosa subsp. modesta, a subalpine endemic to Korea (한반도 아고산대 특산·희귀식물 설앵초의 유전적 다양성과 지리적 분화)

  • Chung, Jae-Min;Son, Sung-Won;Kim, Sang-Yong;Park, Gwang-Woo;Kim, Sung-Shik
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.3
    • /
    • pp.236-243
    • /
    • 2013
  • Many plant species in subalpine regions are under threat of extinction as a result of climate change. In this study, the genetic diversity and geographic differentiation of three regions and six populations of Primula farinosa subsp. modesta (Bisset & Moore) Pax in Korea were assessed using the ISSR (Inter Simple Sequence Repeat) marker. The average genetic diversity (P = 60.62, SI = 0.299, h = 0.190) was relatively lower than that of other long-lived perennials, even though it is a self-incompatible species. AMOVA analysis showed that 50% of the total genetic diversity was partitioned among regions and Bayesian cluster analysis showed some remarkable geographic trends that were structured into 2 or 3 regions, suggesting limited gene flow among regions. Considering the population fragmentation, low level genetic diversity, and high genetic differentiation, it is essential to establish in situ and ex situ conservation strategies for P. farinosa subsp. modesta.

Determination of the minimum population size for ex situ conservation of water-shield (Brasenia schreberi J.F. Gmelin) inferred from AFLP analysis

  • Kim, Changkyun;Na, Hye Ryun;Jung, Jongduk;Kim, Hojoon;Hyun, Jin-Oh;Shin, Hyunchur;Choi, Hong-Keun
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.301-306
    • /
    • 2012
  • Determination of the minimum population size is an important component for the ex situ conservation of an endangered species. Here, we present the identification of collection strategies that most efficiently captured the genetic diversity of Brasenia schreberi J.F. Gmelin (water-shield) in natural populations from the mainland (MGC) and Jeju Island (JNS) of South Korea, using amplified fragment length polymorphism (AFLP) markers. A total of 313 and 383 polymorphic bands were detected in the MGC and JNS populations, respectively. All of the 140 sampled ramets were distinguishable by the presence of distinct AFLP phenotypes. According to the simulation of the individual sampling by maximization sampling, 25 and 28 individuals captured all of the genetic diversity in the MGC population (mainland of South Korea) and the JNS population (Jeju Island), respectively. The level of genetic diversity of the core collections was similar to the entire collection, indicating that the core collections very well represent the diversity of the entire collection. We therefore suggest a management unit of B. schreberi based on the genetic information for assessing the minimum population size for its ex situ conservation.

Genetic Variation and Conservation of the Endangered Species Cotoneaster wilsonii (Rosaceae) from Ulleung Island

  • Park, Jiwon;Lee, Junsoo;So, Soonku;Kim, Muyeol
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.3
    • /
    • pp.125-129
    • /
    • 2009
  • The genetic diversity plays a significant role in determining a species' survival and perseverance. Endangered species often lack genetic variation, which makes them vulnerable to numerous dangers of extinction including selection, genetic drifts and human interference. Knowing an endangered species' genetic background greatly enhances conservation efforts since it reveals why, what and how to conserve that species. Cotoneaster wilsonii is an endangered plant species endemic to Ulleung island, but not enough genetic research has been done on this taxon for its effective conservation plans. In this study, three populations of C. wilsonii in Ulleung island underwent allozyme analysis through starch gel electrophoresis. 10 loci were analyzed and F-statistics was calculated. Overall data indicated that C. wilsonii possessed low genetic diversity with intense inbreeding, heterozygote deficiency and low differentiation among populations. These results implied that C. wilsonii was recently introduced to the Ulleung island from ancestor species, and did not have much time to differentiate. Current status of C. wilsonii habitats is very fragile and vulnerable, with increasing tourism constantly threatening the species' survival. It is very likely that C. wilsonii will become extinct in near future unless organized conservation protects its populations and genetic diversity.

Genetic Diversity and Population Structure of Mongolian Wheat Based on SSR Markers: Implications for Conservation and Management

  • Ya, Narantsetseg;Raveendar, Sebastin;Bayarsukh, N;Ya, Myagmarsuren;Lee, Jung-Ro;Lee, Kyung-Jun;Shin, Myoung-Jae;Cho, Gyu-Taek;Ma, Kyung-Ho;Lee, Gi-An
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.213-220
    • /
    • 2017
  • Production of spring wheat, the major crop in Mongolia, accounts for 98% of the cultivated area. Understanding genetic variability in existing gene bank accessions is critical for collection, conservation and use of wheat germplasms. To determine genetic diversity and population structure among a representative collection of Mongolian local wheat cultivars and lines, 200 wheat accessions were analyzed with 15 SSR markers distributed throughout the wheat genome. A total of 85 alleles were detected, with three to five alleles per locus and a mean genetic richness of 5.66. Average genetic diversity index was 0.69, with values ranging from 0.37-0.80. The 200 Mongolian wheat accessions were mainly divided into two subgroups based on structure and phylogenetic analyses, and some phenotypes were divergent by the subgroups. Results from this study will provide valuable information for conservation and sustainable use of Mongolian wheat genetic resources.

Inventory of Plant Species, Phytosociology, Species Diversity and Pedological characteristics of Rambhi Beat, Senchal East Zone Forest Range, Darjeeling, West Bengal, India

  • Palit, Debnath;Banerjee, Arnab
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.4
    • /
    • pp.331-341
    • /
    • 2014
  • The present study is an attempt to give an account of the inventory of plant species, phytosociological characteristics of vegetation and pedological characteristics of Rambi Beat Forest under Senchal East Forest Zone, Darjeeling, West Bengal, India. Its plant community were analyzed quantitatively and synthetically. The results reflect dominancy of dicotyledons over monocotyledons in the four studied sites The plant community comprising of 50 plant species belonging to 40 genera of 27 families. Ramhi beat reflected higher diversity of species. Maximum IVI value was recorded by Viola surpense (47.17) in Rambhi forest beat. The Berger parker index and evenness index were found to be highest for Viola surpense, Fragaria nubicola, Pilea umbrosa in Rambhi beat. The soil characteristics of the different pedons revealed alkaline nature of soil in Rambhi beat. Higher levels of soil organic carbon content reflect higher fertility of the soil of Rambhi beat. The response towards soil available nitrogen and phosphate were different among the ten pedons of Rambhi beat. Therefore, proper management and conservative measures needs to be implemented for conservation of bioresources in Senchel wildlife Sanctuary of West Bengal, India.

Genetic Diversity and Structure of the Korean Endemic Species, Coreanomecon hylomeconoides Nakai, as Revealed by ISSR markers (한국 특산식물 매미꽃(Coreanomecon hylomeconoides Nakai) 집단의 유전다양성 및 구조)

  • Son, Sung-Won;Chung, Jae-Min;Kim, Eun-Hye;Choi, Kyoung-Su;Park, SeonJoo
    • Korean Journal of Plant Resources
    • /
    • v.26 no.2
    • /
    • pp.310-319
    • /
    • 2013
  • The genetic diversity and structure of eight populations of Coreanomecon hylomeconoides Nakai, an endemic Korean plant, were investigated using 50 ISSR loci from eight primers. The average percentage of polymorphic loci was 47.3%. The Shannon's index (SI=0.218) and gene diversity (h=0.142) were relatively lower than those of other long-lived perennials. The Sancheong (SI=0.233, h=0153), Gwangyang (SI=0.263, h=0.171), and Suncheon (SI=0.241, h=0.159) populations showed greater genetic diversity than the Namhae and Gwangju populations, which are on the edge of the distribution. Analysis of molecular variance (AMOVA) showed that 18% of the total variation could be attributed to differences among populations, and 82% to differences within populations, indicating moderate gene flow among adjacent populations. These results were supported by value of Nm (2.184). The UPGMA conducted using the genetic distance and Bayesian cluster analysis showed a remarkable geographic trend structured into east and west regions. Overall, the results indicate that the Sancheong and Gwangyang populations, which had a large population size and higher degree of genetic diversity, should be the focus of in situ conservation.

Evaluation of Genetic Differentiation of Albizia lucida Populations from Eastern Region of the Indian Sub-continent by ISSR Markers

  • Aparajita, Subhashree;Rout, G.R.
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • Level and distribution of genetic diversity in seven populations of Albizia lucida Benth. in eastern region of the Indian sub-continent were estimated using ISSR markers. Relatively higher level of genetic diversity within populations was observed in seven populations of A. lucida (mean of 0.38). From the result of AMOVA, majority of genetic diversity was allocated within populations (96.2%) resulting in a moderate degree of population differentiation. The observed distribution pattern of I-SSR variant among the populations was coincided with the typical pattern of long-lived woody tree species. Genetic relationships among the populations, reconstructed by UPGMA method, revealed two genetic groups. The population of Anugul and Bargarh turned out to be the most closely related despite a distance location between them. These formations will be of great value in the development of conservation plans for species exhibiting high levels of genetic differentiation due to fragmentation, such as indication of conservation unit size, which populations should be chosen as priority in conservation plans and which samples should be introduced in areas with a low number of individuals of A. lucida.

  • PDF

Conservation Strategy Based on Ecological Characteristics of National Parks in Korea (한국 국립공원의 생태학적 특성 분석화 보전전략)

  • Kim, Jong-Won;Hwa-Kyung Nam
    • The Korean Journal of Ecology
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 1996
  • Ecological approach to conservation of Korea's National Parks (KNP) was reviewed. Four hundred twenty five reports on 15 national parks for 80 years (1915~1994) were analyzed in consideration of phytocoenotic information such as flora, plant community and landscape. Total species was recorded as 157 familles, 752 genera, and 2,369 species (64.3% of Korean flora), in which is included only 75 species of the protected plant species designated by the Ministry of EnvironMent. Occurrence patterns of plant species in national parks were quite similar to one another, but those of plant community were rather unique. Seventy-four of 97 plant communities were reported in only one of 15 national parks, which might be regarded as an endemic or local vegetetation type. These facts are far different from actual status of the KNP's ecosystem, which indicate that not only original data in previous reports are less informative, but also tools of investigation and description are too subjective, and thus these can never afford to monitor the ecosystem. From the correlation analysis between 10 ecological characteristics, the following results were obtained: (1) the species richness was positively associated with the area of national park, (2) the number of visitors was related to landscape diversity, (3) occurrence of the designated species was closely related to the vegetation diversity. Numerical analysis (cluster analysis and ordination) using dissimilarity ratio by ecological characteristics divided 15 national parks into 4 groups. The first group, composed of national parks of Chirisan, $S\v{o}laksan$, Sokrisan, Hallasan, $T\v{o}kyusan$, Odaesan, and Sobaeksan, is recognized as the best national parks in terms of ecological conservation values. Nevertheless, they have been faced with the threat of visitor stress. This study will contribute to the establishment of strategy for appropriate conservation and sustainable use of KNP.

  • PDF