• 제목/요약/키워드: Plant Design

검색결과 3,875건 처리시간 0.032초

플랜트 설계 및 운영 데이터 통합관리 시스템 설계 (Design of a Plant Life Cycle Data Management System for Plant Operation and Maintenance)

  • 이재현;서효원
    • 대한산업공학회지
    • /
    • 제42권3호
    • /
    • pp.241-248
    • /
    • 2016
  • Plant life cycle consists of design, construction, certification, operation, and maintenance phases, and various and enormous plant life cycle data is involved in each phase. Plant life cycle data should be linked with each other based on its proper relationships, so that plant operators can access necessary plant data during their regular operations and maintenance works. Currently, the relationships of plant life cycle data may not be defined explicitly, or they are scattered over several plant information systems. This paper proposes high level design of a plant life cycle data management system based on pre-defined plant life cycle database design. ISO-15926 standard is adapted for the database design. User-interface designs of the plant life cycle data management system are explained based on analysis of plant owners' requirements. A conceptual design of the database is also described with the entity-relationship diagram.

사양 기반 플랜트 설계 시스템에서 생성된 원자력 플랜트 설계 데이터의 중립 모델로의 통합 변환 (An Integrated Translation of Nuclear Power Plant Design Data ftom Specification-driven Plant Design Systems to a Neutral Product Model)

  • 문두환;양정삼;한순흥
    • 한국CDE학회논문집
    • /
    • 제14권2호
    • /
    • pp.96-104
    • /
    • 2009
  • It gradually becomes important to study on how to efficiently integrate and manage plant lifecycle data such as 2D schematic and 3D solid data, logical configuration data, and equipment specifications data. From this point of view, converting plant design data from various systems into neutral data independent from any commercial systems is one of important technologies for the operation and management of plants which usually have a very long period of life. In order to achieve this goal, a neutral model for efficient integration and management of plant data was defined. After schema mapping between one of specification-driven plant design systems and the neutral model was performed, a plant data translator is also implemented according to the mapping result. Finally, by experiments with nuclear power plant design, the feasibility of the translator was demonstrated.

플랜트 기자재 설계품질 향상을 위한 STAGE-GATE 기반 평가항목 개발 (Development of STAGE-GATE based Evaluation Index for the Improvement of Design Quality of Plant Material)

  • 이인태;백동현
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.65-71
    • /
    • 2020
  • Worldwide plant market keeps maintaining steady growth rate and along with this trend, domestic plant market and its contractors also maintain such growing tendency. However, in spite of its external growth, win-win growth of domestic material industry that occupies the biggest share in plant industry cost portion is extremely marginal in reality. Domestic plant material suppliers are required to increase awareness of domestic material brand by securing quality and reliability of international standard through improvement of design quality superior to that of overseas material suppliers. Improvement of design quality of plant material becomes an essential element, not an option, for survival of domestic plant industry and its suppliers. Under this background, in this study, priority and importance by each evaluation index was analyzed by materializing plant design stage through survey of experts and defining evaluation index by each design stage and based on this analysis result, evaluation index of stage-gate based decision-making process that may improve design quality of plant material was suggested. It is considered that by utilizing evaluation index of stage-gate based decision-making process being suggested in this study, effective and efficient decision-making of project decision-makers would be enabled and it would be contributory to improve design quality of plant material.

PML 기반 파라메트릭 해양플랜트 전장생산설계 지원 프로그램 개발 및 업무 효율성 연구 (Development and Working Efficiency of Supporting Program for the Parametric Electrical Outfit Production Design of Offshore Plant Based on PML)

  • 김현철;김종명
    • 한국해양공학회지
    • /
    • 제33권3호
    • /
    • pp.205-213
    • /
    • 2019
  • Recently, because of the global recession of the offshore plant industry and low-cost orders, there has been increasing interest in strengthening the competitiveness of domestic companies for the design and production technologies of offshore plants. However, in the offshore plant design field, the Plant Design Management System (PDMS), which is a 3D CAD program for plant layout developed by AVEVA Marine, is already commonly used as offshore plant design software and widely used in large domestic shipyards and cooperative design companies. Under this background, we have been thinking about ways to design better with the existing software. In this study, we developed a parametric design program to maximize the efficiency and reduce the working time for offshore plant electrical outfit production design based on the Programmable Macro Language (PML) of PDMS. We also examined its performance. By applying the developed program to the offshore plant module selected as an application example, it was confirmed that a 50% improvement in the work efficiency of cable tray design could be obtained compared with the existing method, with work efficiency improvements of 80% or more in other field design work.

시스템엔지니어링 탐색적 접근을 통한 플랜트 엔지니어링 선행설계 전문인력 양성을 위한 스마트 교육시스템 개념설계에 관한 연구 (A Study on Conceptual Design of Smart Training System for Advanced Plant Design and FEED Engineers Based on Exploring Systems Engineering)

  • 홍대근;박창우;서석환;서활원
    • 시스템엔지니어링학술지
    • /
    • 제14권1호
    • /
    • pp.28-35
    • /
    • 2018
  • Front End Engineering Design (FEED), currently dominated by a few advanced countries, creates the highest added-value in the in plant construction industry. In the domestic plant engineering industry, it is difficult to acquire its own technology capability and experience due to lack of experience and shortage of experts in advanced design fields such as basic design and FEED. To achieve competitiveness with the advanced countries, it is necessary to establish smart training system for advanced plant design and FEED engineers. This study aims to design an integrated training framework for plant engineering and FEED using system engineering to build a smart plant engineering education system that learns design knowledge based on educational content and experience based on design stage for chemical plant.

Display System Design Based On The Abstraction Hierarchy

  • Sohn, Kwang-Young;Shin, Hyun-Kook
    • Nuclear Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.339-348
    • /
    • 1996
  • Plant monitoring algorithm developments seem to be saturated which means that display system to show the results from the algorithm should be the well-defined and interactive tools for operator's diagnosing, controlling, restoring the abnormal plant situations. On the other hand, very little generalized display design concepts and evaluations are available. Events that are unfamiliar to operators and that has not been anticipated by designers may cause great threats to the nuclear power plant system safety operation. The abstraction hierarchy, considered most popular display design methodology but not generalized for nuclear power plant design space, has ken proposed as a representation frame work that can be adopted to design interfaces and supports operators in diagnosing overlooked events that should have been considered to operate plant safely. However most practical plant display systems do not fully stick to this design concept but partially rely on their philosophy from design experiences. Abstraction hierarchy display design concept will be do scribed and the trend of Advanced Control Room(ACR) CRT design will also be presented with the conventional display for the several type of plants. Consequently this complementary material should be of interest to designer and regulators concerned with nuclear power plant.

  • PDF

ISO 15926 기반 공정 플랜트 3D 설계 정보 통합 플랫폼의 개발 (Development of an ISO 15926-based Integration Platform of 3D Design Data for Process Plants)

  • 김병철;박상진;김봉철;명세현;문두환
    • 한국CDE학회논문집
    • /
    • 제20권4호
    • /
    • pp.385-400
    • /
    • 2015
  • ISO 15926 is an international standard for the integration and sharing of plant lifecycle data. Plant 3D design data typically consist of logical configuration, equipment specifications and ports, and 3D shape data. This paper presents the method for the ISO 15926-based integration of plant 3D design data. For this, reference data (class, attribute, and template) of ISO 15926 were extended to describe plant 3D design data. In addition to the data model extension, a plant design information integration platform which reads plant 3D design data in ISO 15926 and displays 3D design information was developed. Finally, the prototype platform is verified through the experiment of loading and retrieving plant 3D design data in ISO 15926 with the platform.

ISO 15926 기반 플랜트 3D 설계 데이터 가시화를 위한 시스템 개발 (Development of a System for Visualization of the Plant 3D Design Data Based on ISO 15926)

  • 전영준;김병철;문두환
    • 한국CDE학회논문집
    • /
    • 제20권2호
    • /
    • pp.145-158
    • /
    • 2015
  • ISO 15926 is an international standard for the sharing and integration of plant lifecycle information. Plant design data consist of logical configuration, equipment specifications, 2D piping and instrument diagrams (P&IDs), and 3D plant models (shape data). Although 3D computer-aided design (CAD) data is very important data across the plant lifecycle, few studies on the exchange of 3D CAD data using ISO 15926 have been conducted so far. For this, we analyze information requirements regarding plant 3D design in the process industry. Based on the analysis, ISO 15926 templates are defined for the representation of constructive solid geometry (CSG) - based 3D design data. Since system environments for 3D CAD modeling and Semantic Web technologies are different from each other, we present system architecture for processing and visualizing plant 3D design data in the Web Ontology Language (OWL) format. Through the visualization test of ISO 15926-based 3D design data for equipment with a prototype system, feasibility of the proposed method is verified.

SysML모델과 플랜트정보 간 상호연동을 위한 플러그인 개발 (A Plug-in Development for Interworking between SysML Model and Plant Information)

  • 김준영;이태경;차재민
    • 시스템엔지니어링학술지
    • /
    • 제15권2호
    • /
    • pp.17-30
    • /
    • 2019
  • Due to difficulties in tracking design information of existing document-based configuration management, the research on the development of plant SysML model was started to apply the model-based system engineering methodology to comprehensively manage various design information. However, until now, in order to create the SysML model, the engineers are checking the design information and inputting it to the SysML model. This process requires a lot of time and manpower, it is required to minimize it. Therefore, this study has recognized the problem, a plug-in that extracts the plant design information in the design document and automatically converts the SysML plant model from it. Specifically, the development was performed in the following order. First, the extraction file was selected as the most commonly used Excel file as the plant design document. Next, the design information in the document was analyzed, and extracted information including tag number, name, and the capacity were selected. Finally, the plant SysML model conversion module was implemented. The developed plug-in is confirmed that the task load of the engineers by the SysML model conversion can be minimized and the model can be generated more quickly and accurately.

컴퓨터 시뮬레이션에 의한 미곡 도정공장의 적정설계 및 개발(I) -미곡 도정 시스템의 시뮬레이션- (Optimal Design and Development of a Rice Mill Pilot Plant by Computer Simulation -Simulation of a Rice Mill Pilot Plant-)

  • 정종훈;김보곤
    • Journal of Biosystems Engineering
    • /
    • 제20권1호
    • /
    • pp.47-57
    • /
    • 1995
  • Rice Processing Complex(RPC) have being constructed with a rice mill plant and a facility of drying and storage to overcome problems caused by UR and to produce good quality of rice. An optimal design of a rice mill plant was required to successfully construct and operate it. The development of a simulation model was essential to the design of a rice mill plant. So, all the objectives of this study were to develop a simulation model for the design of a rice mill plant and to develop and evaluate the rice mill system. In this study the simulation model was developed to design a rice mill plant using SLAMSYSTEM, one of simulation languages. The results of this study were as followings. 1. A simulation model was developed with SLAMSYSTEM to represent the processes of a rice mill plant. The simulation model was used to design a rice mill pilot plant with the capacity of 0.5 ton per hour. The rice mill pilot plant was analyzed by the model with alternatives. 2. In the simulation the rice mill system was much influenced by the separating efficiency of a brown rice separator. Especially, the bottleneck of grain flow occurred at the buffer tank for brown rica. separator under 50% separating efficiency of brown rice separator. Hence, as the alternative simulation was conducted under 60% , 70% separating efficiency of brown rice separator, the bottleneck of the system could be minimized at the 60% separating efficiency of brown rice separator. 3. In the alternative simulation the bottleneck of the system was minimized under the hulling capacity of 1 t/h and 60% separating efficiency of brown rice separator with the capacity of 1 t/h. Under such a condition the max. weight of waiting entities at buffer tanks was less 250kg. So, the capacities of the buffer tanks were determined in the basis of simulation results. 4. The milled rice recovery and head rice recovery of the milling system were 74% and 92% in the simulation, respectively. These results of simulation almost corresponded to those of actual rice mill plants. The developed simulation model could be well applied to design a rice mill plant.

  • PDF