• Title/Summary/Keyword: Plant Defense

Search Result 532, Processing Time 0.025 seconds

Modal Analysis and Testing for a Middle Spacer Grid of a Nuclear Fuel Rod (핵 연료봉 중간 지지격자의 모달 해석 및 실험)

  • Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1948-1952
    • /
    • 2012
  • The paper presents modal testing and analysis in order to obtain the dynamic characteristics of a middle spacer grids of a nuclear fuel rod. A spacer grid is one of the important structural elements supporting nuclear fuel rods. Such a fuel rod can be oscillated by its thermal expansion, neutron irradiation and etc. due to cooling water flow under the operation of a nuclear power plant. When the fuel rod vibrates, fretting wear due to repeated friction motion between the fuel rods and spacer grids can be occurred, and so the fuel rod is damaged. In this paper, through modal analysis and testing, natural frequencies and modes of a middle spacer grid were calculated, and the following conclusions were obtained. Firstly the numerical first-seven natural frequencies for spacer grids of a fuel rod having complicated structures have a small difference within 3.8% with experimental natural frequencies, and so the suitability of simulation results was verified. Secondly, experimental mode shapes for a middle spacer grid of a nuclear fuel rod were verified by obtaining lower non-diagonal terms through MAC(Modal Assurance Criteria), and were confirmed by the simulation modes.

Effect of Myricetin on mRNA Expression of Different Antioxidant Enzymes in B16F10 Murine Melanoma Cells (B16F10 Murine Melanoma Cell에서 Myricetin이 항산화효소의 m-RNA 발현에 미치는 영향)

  • Yu Ji Sun;Kim An Keun
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.86-91
    • /
    • 2005
  • Flavonoids are class of polyphenolic compounds widely distributed in the plant kingdom, which display a variety of biological activities, including antiviral, antithrombotic, antiinflammatory, antihistaminic, antioxidant and free-radica 1 scavenging abilities. The antioxidant enzyme (AOE) system plays an important role in the defense against oxidative stress insults. To determine whether flavonoid, myricetin can exert antioxidative effects not only directly by modulating the AOE system but also scavenging free radical, we investigated the influence of the flavonoid myricetin on cell viability, different antioxidant enzyme activities, ROS level and the expression of different antioxidant emzyme in B16F10 murine melanoma cells. Myricetin in a concentration range from 6.25 to $50\;{\mu}M$ decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities, but catalase (CAT) activity was increased. In the myricetin-treated group, ROS levels were decreased dose-dependently. Antioxidant enzyme expression was measured by RT-PCR. Myricetin treatment of B16F10 cells increased catalase expression. Expression levels of copper zinc superoxide dismutase (CuZn SOD) were not affected by exposure of myricetin. Manganese superoxide dismutase (Mn SOD) and GPx expression levels decreased slightly after myricetin treatment. In conclusion, the antioxidant capacity of myricetin was due to CAT and free-radical scavenging.

Nematicidal Compounds from the Leaves of Schinus terebinthifolius Against Root-knot Nematode, Meloidogyne incognita Infecting Tomato

  • Abdel Bar, Fatma M.;Ibrahim, Dina S.;Gedara, Sahar R.;Abdel-Raziq, Mohammed S.;Zaghloul, Ahmed M.
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.272-283
    • /
    • 2018
  • The root-knot nematode, Meloidogyne incognita caused a serious damage to many plants. The phenolic components of the leaves of Schinus terebinthifolius were investigated as potential nematicidal agents for M. incognita. Nine compounds were isolated and characterized as viz., 1,2,3,4,6-pentagalloyl glucose (1), kaempferol-3-O-${\alpha}$-L-rhamnoside (Afzelin) (2), quercetin-3-O-${\alpha}$-L-rhamnoside (Quercetrin) (3), myricetin (4), myricetin-3-O-${\alpha}$-L-rhamnoside (Myricetrin) (5), methylgallate (6), protocatechuic acid (7), quercetin (8), and gallic acid (9) using nuclear magnetic resonance (NMR) spectroscopy. Compound 1 showed pronounced nematicidal activity compared to Oxamyl as a positive control. It showed the lowest eggs-hatchability (34%) and the highest mortality in nematode population (21% after 72 hours of treatment) at a concentration of $200{\mu}g/mL$. It exhibited the best suppressed total nematode population, root galling and number of eggmasses in infected tomato plants. The total carbohydrates and proteins were also significantly induced by 1 with reduction in total phenolics and increase in defense-related proteins. Thus, compound 1 could be a promising, more safe and effective natural nematicidal agent for the control of root-knot nematodes.

Anti-inflammatory Activity of Sambucus Plant Bioactive Compounds against TNF-α and TRAIL as Solution to Overcome Inflammation Associated Diseases: The Insight from Bioinformatics Study

  • Putra, Wira Eka;Salma, Wa Ode;Rifa'i, Muhaimin
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.215-221
    • /
    • 2019
  • Inflammation is the crucial biological process of immune system which acts as body's defense and protective response against the injuries or infection. However, the systemic inflammation devotes the adverse effects such as multiple inflammation associated diseases. One of the best ways to treat this entity is by blocking the tumor necrosis factor alpha ($TNF-{\alpha}$) and TNF-related apoptosis-inducing ligand (TRAIL) to avoid the proinflammation cytokines production. Thus, this study aims to evaluate the potency of Sambucus bioactive compounds as anti-inflammation through in silico approach. In order to assess that, molecular docking was performed to evaluate the interaction properties between the $TNF-{\alpha}$ or TRAIL with the ligands. The 2D structure of ligands were retrieved online via PubChem and the 3D protein modeling was done by using SWISS Model. The prediction results of the study showed that caffeic acid (-6.4 kcal/mol) and homovanillic acid (-6.6 kcal/mol) have the greatest binding affinity against the $TNF-{\alpha}$ and TRAIL respectively. This evidence suggests that caffeic acid and homovanillic acid may potent as anti-inflammatory agent against the inflammation associated diseases. Finally, this study needs further examination and evaluation to validate the potency of Sambucus bioactive compounds.

Examination on Autonomous Recovery Algorithm of Piping System (배관 체계 자율 복구 알고리즘 비교, 분석 및 고찰)

  • Yang, Dae Won;Lee, Jeung-hoon;Shin, Yun-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Piping systems comprising pumps and valves are essential in the power plant, oil, and defense industry. Their purpose includes a stable supply of the working fluid or ensuring the target system's safe operation. However, piping system accidents due to leakage of toxic substances, explosions, and natural disasters are prevalent In addition, with the limited maintenance personnel, it becomes difficult to detect, isolate, and reconfigure the damage of the piping system and recover the unaffected area. An autonomous recovery piping system can play a vital role under such circumstances. The autonomous recovery algorithms for the piping system can be divided into low-pressure control algorithms, hydraulic resistance control algorithms, and flow inventory control algorithms. All three methods include autonomous opening/closing logic to isolate damaged areas and recovery the unaffected area of piping systems. However, because each algorithm has its strength and weakness, appropriate application considering the overall design, vital components, and operating conditions is crucial. In this regard, preliminary research on algorithm's working principle, its design procedures, and expected damage scenarios should be accomplished. This study examines the characteristics of algorithms, the design procedure, and working logic. Advantages and disadvantages are also analyzed through simulation results for a simplified piping system.

The game of safety behaviors among different departments of the nuclear power plants

  • Yuan, Da;Wang, Hanqing;Wu, Jian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.909-916
    • /
    • 2022
  • To study the developments and variations of unsafe behaviors in nuclear power plants thus reduce the possibility of human-related accidents, this paper, based on the Game Theory, focused on the changes in benefits of the Department of Management, Operational and Emergency in a nuclear power plant, and established the expected revenue functions of these departments. Additionally, the preventive measures of unsafe behaviors in nuclear power plants were also presented in terms of these 3 departments. Results showed that the violations of the Operation Department (OD) and the Emergency Department (ED) were not only relevant with the factors such as their own risks, costs, and the responsibility-sharing due to accidents, but also affected by the safety investments from the Management Department (MD). Furthermore, results also showed that the accident-induced responsibility-sharing of both the OD and the ED would rise, if the MD increased the investments in safety. As a result, the probability of violation behaviors of these 3 departments would be attenuated consciously, which would reduce the unsafe behaviors in the nuclear power plants significantly.

The Responses of Antioxidative Enzymes and Salt Tolerance of Atriplex gmelini (Atriplex gmelini(가는갯능쟁이)의 내염성과 항산화 효소 반응)

  • 배정진;윤호성;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.273-280
    • /
    • 2003
  • Saline conditions invoke oxidative stress attributed to the overproduction of reactive oxygen species (ROS). Changes in quantum efficiency and antioxidative enzyme activity upon salt treatment were examined in a salt-tolerant plant, Atriplex gmelini, to test the hypothesis that salt tolerance of A. gmelini is due to the increased activity of antioxidative enzymes. A. gmelini showed optimum growth at 100 mM NaCl producing 116% of the shoot dry weight over control plants in 0 mM NaCl treatment. Healthy growth persisted up to 300 mM NaCl treatment maintaining normal internal water content and dry weight. No photochemical stress or damages on antioxidative defense system was obvious in plants of 2 and 4 day salt treatment which was indicated by increased quantum efficiency (Fv/Fm value), decreased stress index (Fo/Fm value), and increased activity of antioxidative enzymes such as SOD, APX, GR. However, the plants treated with 400 mM NaCl showed decrease in growth and in antioxidative enzyme activity although the enzyme activity was still higher than that of the 0 mM NaCl treated plants (l31%, 114%, and 134% of the SOD, APX, and GR activity, respectively). Interestingly, another important antioridative enzyme that scavenges H₂O₂ in plant cells, CAT, showed rapid decrease in its activity as salt concentration increased; 38%, 22%, 15% of the 0 mM NaCl treated plants at 200, 300, 400 mM NaCl treatments, respectively. It appears that the enzymes in ascorbate-glutathione cycle such as APX and GR play the major roles in scavenging ROS produced by salt stress in A. gmelini. After 6 days of salt treatment, the damage in photochemical and antioxidative defense system was indicated by decreased Fv/Fm value and increased Fo/Fm value. A. gmelini appears to cope with short term salt treatment by enhanced activity of the antioxidative defense system, whereas long term stress invoke oxidative stress by increased ROS due to the damages in photochemical and antioxidative system.

Identification and characterization of the phytocystatin family from Brassica rapa

  • Hong, Joon-Ki;Hwang, Jung-Eun;Park, Tae-Ho;Zang, Yun-Xiang;Lee, Sang-Choon;Kwon, Soo-Jin;Mun, Jeong-Hwan;Kim, Hyun-Uk;Kim, Jin-A;Jin, Mi-Na;Kim, Jung-Sun;Lee, Soo-In;Lim, Myung-Ho
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.317-327
    • /
    • 2008
  • Phytocystatins, which are inhibitors of plant cysteine peptidases, are involved in the regulation of protein turnover and in the defense against insect pests and pathogens. Extensive searches in the Brassica rapa genome allowed the prediction of at least eight different phytocystatin genes on seven chromosomes in the B. rapa genome. Structure comparisons based on alignments of the all BrCYS ($\underline{B}$. $\underline{r}apa$ $phyto{\underline{cys}}tatin$) proteins using the CLUSTALW program revealed conservation of the three consensus motifs known to interact with the active site of cysteine peptidases. According to the phylogenetic analysis based on the deduced amino acid sequences, the eight BrCYS proteins were divided into several clusters related to the orthologous phytocystatin. The predicted three-dimensional structure models of the eight BrCYS proteins demonstrate that all of these proteins are similar to the reported crystal structure of oryzacystatin-I (OC-I). Digital northern and RT-PCR analyses indicated that the eight BrCYS genes exhibit different expression patterns in B. rapa tissues and respond differently to abiotic stimuli. The differences in gene structure and expression between the eight BrCYS genes suggest that these proteins may play diverse physiological roles in B. rapa and may interact with cysteine peptidases through different mechanisms.

Proteomic analysis of Korean ginseng(Panax ginseng C. A. Meyer) following exposure to salt stress

  • Kim, Sun-Tae;Bae, Dong-Won;Lee, Kyung-Hee;Hwang, Jung-Eun;Bang, Kyong-Hwan;Kim, Young-Chang;Kim, Ok-Tae;Yoo, Nam-Hee;Kang, Kyu-Young;Hyun, Dong-Yun;Lim, Chae-Oh
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2008
  • We evaluated the response to salt stress of two different ginseng lines, STG3134 and STG3159, which are sensitive and tolerant, respectively, to salt treatment. Plants were exposed to a 5 dS/m salt solution, and chlorophyll fluorescence was measured. STG3134 ginseng was more sensitive than STG3159 to salt stress. To characterize the cellular response to salt stress in the two different lines, changes in protein expression were investigated using a proteomic approach. Total protein was extracted from detached salt-treated leaves of STG3134 and STG3159 ginseng, and then separated by two-dimensional polyacrylamide gel electrophoresis(2-DE). Approximately 468 protein spots were detected by 2-DE and Coommassie brilliant blue staining. Twenty-two proteins were found to be reproducibly up- or down-regulated in response to salt stress. Among these proteins, twelve were identified using MALDI-TOF MS and ESI-Q-TOF and classified into several functional groups: photosynthesis-related proteins(oxygen-evolving enhancer proteins 1 and 2, rubisco and rubisco activase), detoxification proteins(polyphenol oxidase) and defense proteins($\beta$-1,3-glucanase, ribonuclease-like storage protein, and isoflavone reductase-like protein). The protein levels of ribonuclease-like storage protein, which was highly induced in STG3159 ginseng as compared to STG3134, correlated tightly with mRNA transcript levels, as assessed by reverse-transcription(RT)-PCR. Our results indicate that salinity induces changes in the expression levels of specific proteins in the leaves of ginseng plants. These changes may, in turn, playa role in plant adaptation to saline conditions.

Induction of a Sweetpotato Anion Peroxidase swpa2 Gene Expression by Stress-related Chemicals and Pectobacterium chrysanthemi (스트레스 관련 화합물 처리 및 병원균 감염에 의한 고구마 산성 퍼옥시다제 swpa2 발현 유도)

  • Kim, Yun-Hee;Ryu, Sun-Hwa;Kim, Kee-Yeun;Kwon, Suk-Yoon;Bang, Jae-Wook;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.83-88
    • /
    • 2004
  • Expression of an anionic peroxidase swpa2 gene isolated from cultured cells of sweetpotato (Ipomoea batatas) was investigated under various stress conditions by RT-PCR. The swpa2 gene was not expressed in any tissues of intact sweetpotato plant grown at the normal condition. The expression of this gene was strongly induced in leaf tissue by treatment of $H_2O$$_2$ (440mM). Treatment of NaCl (100mM), ABA (0.1mM) and methyl jasmonate(MeJA, 0.1mM) also induced the expression of swpa2 gene. Interestingly, salicylic acid (SA, 0.1 mM) did not induce the expression of swpa2 gene, indicating that anionic swpa2 POD is differently involved in SA and MeJA signaling pathways. In addition, swpa2 gene was strongly induced in sweetpoato leaf tissues infected with Pectobacterium chrysanthemi, indicating that swpa2 is involved in defense related to the pathogenesis of P. chrysanthemi in sweetpotato plants. These results strongly suggest that swpa2 gene is involved in overcoming oxidative stresses caused by both abiotic and biotic stress.